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HOMOGENIZATION FOR
FISSURED MEDIUM EQUATIONS

Hee Chul Pak*

Abstract. We introduce the homogenized differential systems for
fissured medium equations representing the small temperature vari-
ation or densities of a fluid in a system consisting of two compo-
nents.

1. Introduction

In this paper we consider the fissured medium equations:
∂ u

∂t
− div B(x)∇u+

1
δ
(u− v) = f(t),(1.1)

−div C(x)∇v +
1
δ
(v − u) = 0(1.2)

on an anisotropic fissured medium consisting of a matrix of porous and
permeable blocks or cells which are separated from one another by a
highly developed system of fissures or flow paths through which the
majority of diffusion occurs [10], [11]. The unknown u, v represent
the densities (of a fluid) or temperatures obtained by averaging in the
respective medium over a generic neighborhood sufficiently large to in-
clude many cells. The anisotropic heterogeneity of the medium gives
rise to the flux terms −B(x)∇u and −C(x)∇v with the conductivities
B, C of n × n-matrices. One assumes that the flow rate (of a fluid) or
the temperature exchange between the two components is proportional
to the density difference u − v with resistance of the medium δ. This
produces the first diffusion equation with the exchange term 1

δ (u − v).
A possible external force is described by f(x, t) on the right side of the
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first equation which describes the diffusion on the fissure. Compared to
the fissure, the matrix is steady state which brings the second equation.

The double-porosity concept developed slowly during the first half
of the 20th century, and one finds a good presentation of applications
to diffusion through a heterogeneous medium in [1]. The special cases
which are used as a model for diffusion through a slowly sorbing porous
medium are studied in [6], [4], and various nonlinear extensions are stud-
ied in [2], [3], [12].

In this paper, we focus on the homogenization of fissured medium
equations. In Section 3.1, the system of fissured medium equations is
introduced and it is comprehensively expanded to get the homogenized
(fissured medium) system in Section 3.2. The main technique is the com-
pactness argument via a-priori estimates. The technique we introduce
in this paper would be applicable for forthcoming homogenizations for
nonlinear systems of fissured medium equations with appropriate energy
estimates.

We observe that the homogenized system has the same form as the
ε-equation, which is not always the case.

2. Remarks from functional analysis

We briefly review some basic notions from functional analysis. Let
V be a Hilbert space which is dense in another Hilbert space H and
assume the identity V → H is continuous. Let a(·, ·) be a continuous
bilinear form on V. Then we define D to be the set of all u ∈ V such
that the function v 7→ a(u, v) is continuous on V with the H-norm. For
each such u ∈ D there is then a unique Au ∈ H such that

a(u, v) = 〈Au, v〉
H
, u ∈ D , v ∈ V ,

and this defines a linear operator A : D → H. A form a : V ×V → R
is V-coercive (or V-elliptic) if there exists a constant c0 > 0 for which

c0‖u‖2
V
≤ a(u, u), u ∈ V.

Equivalently, A ∈ L(V,V′) defined by Au(v) ≡ a(u, v), (u, v ∈ V) is
V-coercive if a(·, ·) is. An unbounded operator A : D → H is accretive
if

〈Ax, x〉
H
≥ 0 , x ∈ D

and it is m-accretive if, in addition, I + A maps D onto H. It is easy
to see how the unbounded operator A with domain D in H constructed
as above from a continuous bilinear form a(·, ·) on V is related to the



Homogenization for Fissured Medium Equations 73

continuous operator A ∈ L(V,V′) which is equivalent to a(·, ·). In fact,
the graph of A is the restriction of the graph ofA to V×H. That is, note
that we have the following inclusion H′ ↪→ V′ by the restriction to V of
the functionals on H, so if we take the domain D = {u ∈ V : Au ∈ H′},
then Au ∈ H, which means that Au ∈ H′ through the identification of
H with H′ by its Riesz map. Thus, with this identification, it is clear
that A is the restriction of A to H ⊂ V′; that is, if R is the Riesz map
of H onto H′, then A = R−1A|D . We call such A (induced from A)
regular.

3. Fissured medium equations and its homogenized process

3.1. The ε-fissured medium equations

We consider the homogenization of the small temperature variation
in a system consisting of two components which is introduced in [10]
and [11];

∂

∂t
uε(t)− div B

(x
ε

)
∇uε(t) +

1
δ
(uε − vε) = f(t),(3.1)

−div C
(x
ε

)
∇vε(t) +

1
δ
(vε − uε) = 0.(3.2)

We assume that anisotropic conductivities B ≡ (bij), C ≡ (cij) are
n× n-matrices satisfying: for ξ = (ξ1, ξ2, · · · , ξn) ∈ Rn,

c0 |ξ |2≤
n∑

i,j=1

bij(x)ξiξj and c0 |ξ |2≤
n∑

i,j=1

cij(x)ξiξj(3.3)

for some strictly positive constant c0 > 0, and assume that δ is strictly
positive and represents the resistance of the medium to this exchange.
The given medium Ω is presumed to be an open subset of Rn(the same
theory can be obtained even the case when Ω is a curved domain such
as a Riemannian manifold). If there is a boundary, one poses Dirichlet
boundary condition u = 0 on ∂Ω, which naturally makes us consider the
function space V ≡ H1

0 (Ω). We also assume that the external source
f : [0, T ] → L2(Ω) is Hölder continuous, that is, for some 0 < α < 1,

‖f(t1)− f(t2)‖L2(Ω) ≤ C|t1 − t2|α for t1, t2 ∈ [0, T ],(3.4)

and bij , cij ∈ C∞(Ω) for all 1 ≤ i, j ≤ n.
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3.2. Homogenized process

3.2.1. Existence of the ε-solution.
We put the fissured medium equations (3.1) and (3.2) in functional

analysis setting. To accomplish it, define bilinear forms Bε, Cε ∈ L(V,V′)
as follows:

Bεu1(u2) ≡
∫

Ω
B
(x
ε

)
∇u1 · ∇u2 dx, u1, u2 ∈ V,

Cεv1(v2) ≡
∫

Ω
C
(x
ε

)
∇v1 · ∇v2 dx, v1, v2 ∈ V.

Then we have a variational formulation;
∂uε

∂t
+ Bεuε +

1
δ
(uε − vε) = f(t) ,(3.5)

Cεvε +
1
δ
(vε − uε) = 0 in V′,(3.6)

with the identification 1
δ (uε − vε) to its dual via the Riesz map R (in-

troduced in Section 2). From equation (3.6), we have

vε =
(
Cε +

1
δ

)−1 1
δ
uε.(3.7)

This expression makes sense by virtue of Lax-Milgram theorem - in fact,
the linear operator Cε + 1

δ : V → V′ is V-coercive (uniformly in ε > 0).
Substituting (3.7) into equation (3.6), we get

∂uε

∂t
+

{
1
δ

(
I − 1

δ

(
Cε+

1
δ

)−1
)

+ Bε

}
uε = f in V′.(3.8)

Clearly, we have uε(t) ∈ V at each t ∈ [0, T ]. We define a continuous
operator Aε : V → V′ by

Aε ≡
1
δ

(
I − 1

δ

(
Cε+

1
δ

)−1
)

+ Bε,(3.9)

and we put the corresponding unbounded operator Aε : D(Aε) → H of
Aε on the Hilbert space H ≡ L2(Ω) with the domain D(Aε) ≡ {v ∈ V :
Aεv ∈ H} as we pointed out in Section 2. Then equation (3.8) reads

∂uε

∂t
+ Aεuε = f.(3.10)

Note that each operator Aε : D(Aε) −→ H is self-adjoint and regular
m-accretive. In fact, the first part of (3.9) is the Yosida approxima-
tions of an m-accretive operator Cε, so it is m-accretive (page 161 in
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[10]). Hence by Hille-Yosida theorem, there exists the unique solution
of initial value problem for (3.10) − in fact, we obtain a unique solution
uε ∈ C([0, T ];L2(Ω))∩C1((0, T );H1

0 (Ω)∩H2(Ω)) for the Cauchy prob-
lem (3.10). Also, we define vε(t) by (3.7), then vε ∈ C([0, T ];L2(Ω)) ∩
C1((0, T );H1

0 (Ω)∩H4
loc(Ω)) is the unique solution to the system of equa-

tions (3.5) and (3.6).

3.2.2. Solution of the limt equation.
We will show that the sequence {uε} of solutions for (3.10) converges

to some u in some topological space, which shall be clarified in the
following process. The limit u turns out to be a solution of an evolution
equation. This equation could be described in the following. We first
define the operators B, C as

Bu1(u2) ≡
∫

Ω
B̄∇u1 · ∇u2 dx, Cu1(u2) ≡

∫
Ω
C̄∇u1 · ∇u2 dx,

for u1, u2∈V, where we set

B̄ ≡ inf
u∈H1([0,1]n)

〈(I +∇u) ·A(I +∇u)〉,

C̄ ≡ inf
u∈H1([0,1]n)

〈(I +∇u) ·B(I +∇u)〉.

Then as in the above, a continuous operator A : V → V′ can be chosen
by

A ≡ 1
δ

(
I − 1

δ

(
C +

1
δ

)−1
)

+ B

and let the operator A : D(A) → H be the corresponding unbounded
operator of A with D(A) ≡ {v ∈ V : Av ∈ H}. Since A is self-adjoint
and V-coercive, there exists a unique solution u ∈ C([0, T ];L2(Ω)) ∩
C1((0, T );H1

0 (Ω) ∩H2(Ω)) of the Cauchy problem
∂u

∂t
+ Au = f.(3.11)

3.2.3. A-priori estimates.
We put uε in the functional equation (3.6) and vε in the equation

(3.5) and add the resulting two equations together to get
1
2
d

dt
‖uε‖2

L2(Ω)
+ c0‖∇uε‖2

L2(Ω)
+ c0‖∇vε‖2

L2(Ω)
+

1
δ
‖uε−vε‖2

L2(Ω)

≤
∫

Ω
f(x)uε(x)dx

≤ ‖f‖
L2(Ω)

‖uε‖L2(Ω)
.
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This leads to
d

dt
‖uε‖2

L2(Ω)
≤ 2‖f‖

L2(Ω)
‖uε‖L2(Ω)

.(3.12)

Substituting ‖uε‖2
L2(Ω)

≡ y, we notice that (3.12) is an ordinary differ-

ential inequality ẏ(t) ≤ α(t)
√
y(t) with α(t) ≡ 2‖f(t)‖

L2(Ω)
and ˙≡ d

dt .

Equivalently, we have ẏ√
y ≤ α or

‖uε(t)‖L2(Ω)
≤ 4

∫ T

0
‖f(t)‖

L2(Ω)
dt+ ‖uε(0)‖

L2(Ω)
.

This shows max
t∈[0,T ]

‖uε(t)‖L2(Ω)
is bounded. We also have max

t∈[0,T ]
‖vε(t)‖L2(Ω)

is bounded, since the operator
(
Cε + 1

δ

)−1 is bounded on L2(Ω) with
respect to the operator norm and vε(t) = 1

δ

(
Cε + 1

δ

)−1
uε(t) for all

t ∈ [0, T ]. In turn, from the fact that

c0

∫ T

0
‖∇uε(t)‖2

L2(Ω)
dt+ c0

∫ T

0
‖∇vε(t)‖2

L2(Ω)
dt

≤ max
t∈[0,T ]

‖uε(t)‖L2(Ω)

∫ T

0
‖f(t)‖

L2(Ω)
dt+

1
2
‖uε(0)‖2

L2(Ω)
,

we observe that ‖∇uε‖L2([0,T ];L2(Ω))
and ‖∇vε‖L2([0,T ];L2(Ω))

are bounded.

3.2.4. Weak convergence and the homogenized equation.
For any φ ∈ C1[0, T ] with φ(T ) = 0, letting

∫ T
0 uε(t)φ(t)dt ≡ ūε,

we can notice that the sequence {ūε} is in V. It follows from the a-
priori estimates that a subsequence {ūεj} converges weakly to some
ū ≡

∫ T
0 u(t)φ(t)dt in V. Also, putting

∫ T
0 vε(t)φ(t)dt ≡ v̄ε, a subse-

quence {v̄εj} converges weakly to some v̄ ≡
∫ T
0 v(t)φ(t)dt in V. By

heuristic homogenization methods, we can find that the corresponding
flows converge weakly in L2(Ω): for any ψ ∈ L2(Ω), we have

Bεj ūεj (ψ) → Bū(ψ) and Cεj v̄εj (ψ) → Cv̄(ψ)

(for example, we refer [13]).

Remark 3.1. By virtue of Rellich-Kandorochov theorem, we obtain
that a subsequence {ūεj} converges strongly to ū in L2(Ω), In particular,∫ T
0 uεj (t) dt →

∫ T
0 u(t) dt in L2(Ω). This in turn implies that a subse-

quence {uεj (t)} converges strongly to u(t) in L2(Ω) for each t ∈ [0, T ].
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Therefore we have that∫ T

0

∂

∂t
uεj (t)φ(t)dt = −

∫ T

0
uεj (t)

∂

∂t
φ(t)dt+ uεj (0)φ(0)

→ −
∫ T

0
u(t)

∂

∂t
φ(t)dt+ u(0)φ(0) strongly in L2(Ω)

=
∫ T

0

∂

∂t
u(t)φ(t)dt.

Hence taking weak limits in (3.5) and (3.6) yields the limit system

∂u

∂t
+ Bu+

1
δ
(u− v) = f,

Cv +
1
δ
(v − u) = 0 in V′,

which is equivalent to the limit equation

∂u

∂t
+

{
1
δ

(
I − 1

δ

(
C +

1
δ

)−1
)

+ B

}
u = f.

This produces the Cauchy problem (3.11) and the homogenized fissured
medium equation;

∂

∂t
u(t)− div B̄ ∇u(t) +

1
δ
(u− v) = f(t) ,(3.13)

−div C̄ ∇v(t) +
1
δ
(v − u) = 0.(3.14)

Remark 3.2. By the uniqueness of the solution, we can observe that
the original sequence {uε(t)} converges to u(t) in L2(Ω) for each t ∈
[0, T ], and {vε(t)} converges to v(t) in L2(Ω) for each t ∈ [0, T ].

We summarize the process as follows:

Theorem 3.3. Let Ω be an open subset of Rn and a positive con-
stant T >0. For a given initial source uε(0)=u0∈L2(Ω) and an external
source f ∈ C0,α([0, T ];L2(Ω)), 0< α < 1, the sequences of solutions uε

in C([0, T ];L2(Ω)) ∩ C1((0, T );H1
0 (Ω)∩H2(Ω)), vε in C([0, T ];L2(Ω)) ∩

C1((0, T );H1
0 (Ω)∩H4

loc(Ω)) for the system of fissured medium equations
(3.1) and (3.2) satisfying the elliptic condition (3.3) converge strongly in
L2(Ω) together with the weak-convergence in L2[0, T ] to the solutions u
in C([0, T ];L2(Ω)) ∩ C1((0, T );H1

0 (Ω) ∩H2(Ω)), v in C([0, T ];L2(Ω)) ∩
C1((0, T );H1

0 (Ω) ∩H4
loc(Ω)), respectively, of the fissured medium equa-

tions (3.13) and (3.14) with the same initial source u(0) = u0.
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Remark 3.4. We note that the homogenized fissured medium equa-
tions have the same form as the ε-fissured medium equations.
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