• Title/Summary/Keyword: anisotropic damage

Search Result 63, Processing Time 0.026 seconds

Dynamic behaviour of stiffened and damaged coupled shear walls

  • Meftah, S.A.;Tounsi, A.;Adda-Bedia, E.A.
    • Computers and Concrete
    • /
    • v.3 no.5
    • /
    • pp.285-299
    • /
    • 2006
  • The free vibration of stiffened and damaged coupled shear walls is investigated using the mixed finite element method. The anisotropic damage model is adopted to describe the damage extent of the reinforced concrete shear wall element. The internal energy of a locally damaged shear wall element is derived. Polynomial shape functions established by Kwan are used to present the component of displacements vector on each point within the wall element. The principle of virtual work is employed to deduce the stiffness matrix of a damaged shear wall element. The stiffened system is reinforced by an additional stiffening beam at some level of the structure. This induces additional axial forces, and thus reduces the bending moments in the walls and the lateral deflection, and increases the natural frequencies. The effects of the damage extent and the stiffening beam on the free vibration characteristics of the structure are studied. The optimal location of the stiffening beam for increasing as far as possible the first natural frequency of vibration is presented.

Solder Free Systems by ACI and NCP

  • Okuno Atsushi;Ishitani Masaki;Kodera Yoshiaki
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.257-261
    • /
    • 2004
  • Recently, Pb free solder technologies are developed, and start using for many packaging items. But this technology contains many problems. They are very high re-flow temperature and high cost than normal solder paste. Specially, high re-flow temperature effects heavy damage to packaging and occur many crack to packaging. We developed special ACI (anisotropic conductive ink) that becomes substitution of solder paste. This technology cans adhesive lower temperature such as $120\~150^{\circ}C$. Adhesion time is very short, too. This technology is suitable for mass production.

  • PDF

Damage mechanics approach and modeling nonuniform cracking within finite elements for safety evaluation of concrete dams in 3D space

  • Mirzabozorg, H.;Kianoush, R.;Jalalzadeh, B.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.1
    • /
    • pp.31-46
    • /
    • 2009
  • An anisotropic damage mechanics approach is introduced which models the static and dynamic behavior of mass concrete in 3D space. The introduced numerical approach is able to model non-uniform cracking within the cracked element due to cracking in Gaussian points of elements. The validity of the proposed model is considered using available experimental and theoretical results under the static and dynamic loads. No instability and stress locking is observed in the conducted analyses. The Morrow Point dam is analyzed including dam-reservoir interaction effects to consider the nonlinear seismic behavior of the dam. It is found that the resulting crack profiles are in good agreement with those obtained from the smeared crack approach. It is concluded that the proposed model can be used in nonlinear static and dynamic analysis of concrete dams in 3D space and enables engineers to define the damage level of these infrastructures. The performance level of the considered system is used to assess the static and seismic safety using the defined performance based criteria.

Evaluation of the creep damage of the Type 316LN stainless steel by the ultrasonic wave velocity (초음파 속도를 이용한 Type 316LN 스테인리스 강의 크리프 손상 평가)

  • Yi Won;Noh Kyung-Yong;Yun Song-Nam;Kim Woo-Gon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.818-823
    • /
    • 2005
  • Creep damage is one of the mosl important characteristics for the stability of high temperature structures such as huge energy converting facilities. Creep failure of Type 316LN stainless steel is highly correlated to generation and growth of the voids. In this paper, in order to investigate the correlation of creep rupture time and ultrasonic parameters (group velocity, angular velocity), creep-damaged Type 316LN specimens and measurements for the ultrasonic parameters were made. However, bi-directional measurements were applied along the load direction and the perpendicular direction to the load line by means of the contact type probe of which the central frequencies are 10MHz, 15MHz and 20MHz. Analyzing the angular velocities of the ultrasonic signals obtained from the load direction, it was confirmed that the angular velocities were declined as the creep time passed when 15MHz and 20MHz probes were used. Also, the group velocities were declined for all three frequencies as the creep time increased. Thus, positive feasibility for the creep damage evaluation by means of the angular and group velocities was confirmed. Moreover, result of analysis for the ultrasonic signal which was obtained from the perpendicular direction upon the angular and group velocities indicated little variation for both of the angular and group velocities. Therefore, the creep damage is likely to represent anisotropic itself.

  • PDF

Contimuum Damage Model of Concrete using Hypothesis of Equivalent Elastic Energy (등가탄성에너지법에 의한 콘크리트의 연속체 손상모델)

  • 이기성;변근주;송하원
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.5
    • /
    • pp.172-178
    • /
    • 1995
  • Concrete contains numerous microcracks at initially poured. The growth and propagation of nicrockacsk are believed tc finally incur the faiure of concrete. These processings are understood as a damage. Damage IS represented as a second-order tensor and crack is treated as a con tinuum phenomenon. In this paper, damage is characterized through the effective stress concept together with the hypothesis of elastic energy equivalence, and damage evolution law and constitutive equation of a damage model are derived by using the Helmholtz frte eriergy and the dissipation potential by means of the thermodynamic principles. The constitutive equation of the model includes the effects of elasticity, anisotropic damage and plasticity of concrete. There are two effective tangent stiffness tensors in this model : one is for elastic-darnage and the other for plastic damage. For the verification of the model, finite element analysis was performed for the analysis of concrete subjec:t to uniaxial and biaxial loading and the results obtained were compared with test results.

An Evaluation of the Effect of Micro-cracks on Macro Elastic Moduli (매크로 탄성 계수에 미치는 마이크로 크랙의 영향 평가)

  • Kang, Sung-Soo;Kim, Hong-Gun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.97-103
    • /
    • 2006
  • A meso-scale analysis method using the natural element method, which is a kind of meshless method, is proposed for the analysis of material damage of brittle microcracking solids such as ceramic materials, concrete and rocks. The microcracking is assumed to occur along Voronoi edges in the Voronoi diagram generated using the nodal points as the generators. The mechanical effect of microcracks is considered by controlling the material constants in the neighborhood of the microcracks. The macro elastic moduli of anisotropic as well as isotropic solids containing a number of randomly distributed microcracks are calculated in order to demonstrate the validity of the proposed method.

Selective etch of silicon nitride, and silicon dioxide upon $O_2$ dilution of $CF_4$ plasmas ($CF_4$$O_2$혼합가스를 이용한 산화막과 질화막의 선택적 식각에 관한 연구)

  • 김주민;원태영
    • Electrical & Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.90-94
    • /
    • 1995
  • Reactive Ion Etching(RIE) of Si$_{3}$N$_{4}$ in a CF$_{4}$/O$_{2}$ gas plasma exhibits such good anisotropic etching properties that it is widely employed in current VLSI technology. However, the RIE process can cause serious damage to the silicon surface under the Si$_{3}$N$_{4}$ layer. When an atmospheric pressure chemical vapor deposited(APCVD) SiO$_{2}$ layer is used as a etch-stop material for Si$_{3}$N$_{4}$, it seems inevitable to get a good etch selectivity of Si$_{3}$N$_{4}$ with respect to SiO$_{2}$. Therefore, we have undertaken thorough study of the dependence of the etch rate of Si$_{3}$N$_{4}$ plasmas on $O_{2}$ dilution, RF power, and chamber pressure. The etch selectivity of Si$_{3}$N$_{4}$ with respect to SiO$_{2}$ has been obtained its value of 2.13 at the RF power of 150 W and the pressure of 110 mTorr in CF$_{4}$ gas plasma diluted with 25% $O_{2}$ by flow rate.

  • PDF

The Anisotropic and Viscoelastic Properties of Bone Tissue (근골격계의 골조직이 가지는 이방성 및 점탄성 특성)

  • Kim, Jin-Sung;Kwon, Jung-Sik;Roh, Jin-Ho;Lee, Soo-Yong
    • Composites Research
    • /
    • v.25 no.1
    • /
    • pp.9-13
    • /
    • 2012
  • In this research, biomechanical characteristics of the bone tissue are experimentally investigated. By using specimens of the bovine bone, the mechanical properties are obtained through tension and shear tests. In experiments, non-homogeneous and anisotropic properties with respect to longitudinal and transversal directions are observed. Moreover, the viscoelastic behavior in which modulus and strength properties are dependent on strain rates is analyzed. It is expected that a numerical damage model of the bone be efficiently established based on the results.

Modelling reinforced concrete beams under mixed shear-tension failure with different continuous FE approaches

  • Marzec, Ireneusz;Skarzynski, Lukasz;Bobinski, Jerzy;Tejchman, Jacek
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.585-612
    • /
    • 2013
  • The paper presents quasi-static numerical simulations of the behaviour of short reinforced concrete beams without shear reinforcement under mixed shear-tension failure using the FEM and four various constitutive continuum models for concrete. First, an isotropic elasto-plastic model with a Drucker-Prager criterion defined in compression and with a Rankine criterion defined in tension was used. Next, an anisotropic smeared crack and isotropic damage model were applied. Finally, an elasto-plastic-damage model was used. To ensure mesh-independent FE results, to describe strain localization in concrete and to capture a deterministic size effect, all models were enhanced in a softening regime by a characteristic length of micro-structure by means of a non-local theory. Bond-slip between concrete and reinforcement was considered. The numerical results were directly compared with the corresponding laboratory tests performed by Walraven and Lehwalter (1994). The advantages and disadvantages of enhanced models to model the reinforced concrete behaviour were outlined.

Prediction of Creep Behavior for Cohesive Soils (점성토에 있어서의 크리프 거동 예측)

  • Kim Dae-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.79-89
    • /
    • 2004
  • An elastic-plastic-viscous constitutive model was proposed based on a simple formulation scheme. The anisotropic modified Cam-Clay model was extended for the general stress space for the plastic simulation. The generalized viscous theory was simplified and used for the viscous constitutive part. A damage law was incoporated into the proposed constitutive model. The mathematical formulation and development of the model were performed from the point of view that fewer parameters be better employed. The creep behaviors with or without creep rupture were predicted using the developed model for cohesive soils. The model predictions were favorably compared with the experimental results including the undrained creep rupture, which is an important observed phenomenon for cohesive soils. Despite the simplicity of the constitutive model, it performs well as long as the time to failure ratio of the creep rupture tests is within the same order of magnitude.