Browse > Article
http://dx.doi.org/10.12989/cac.2013.12.5.585

Modelling reinforced concrete beams under mixed shear-tension failure with different continuous FE approaches  

Marzec, Ireneusz (Department of Civil Engineering, Gdansk University of Technology)
Skarzynski, Lukasz (Department of Civil Engineering, Gdansk University of Technology)
Bobinski, Jerzy (Department of Civil Engineering, Gdansk University of Technology)
Tejchman, Jacek (Department of Civil Engineering, Gdansk University of Technology)
Publication Information
Computers and Concrete / v.12, no.5, 2013 , pp. 585-612 More about this Journal
Abstract
The paper presents quasi-static numerical simulations of the behaviour of short reinforced concrete beams without shear reinforcement under mixed shear-tension failure using the FEM and four various constitutive continuum models for concrete. First, an isotropic elasto-plastic model with a Drucker-Prager criterion defined in compression and with a Rankine criterion defined in tension was used. Next, an anisotropic smeared crack and isotropic damage model were applied. Finally, an elasto-plastic-damage model was used. To ensure mesh-independent FE results, to describe strain localization in concrete and to capture a deterministic size effect, all models were enhanced in a softening regime by a characteristic length of micro-structure by means of a non-local theory. Bond-slip between concrete and reinforcement was considered. The numerical results were directly compared with the corresponding laboratory tests performed by Walraven and Lehwalter (1994). The advantages and disadvantages of enhanced models to model the reinforced concrete behaviour were outlined.
Keywords
bond-slip; characteristic length; damage mechanics; elasto-plasticity; non-local theory; reinforced concrete beam; size effect; smeared crack model; strain localization;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Sluys, L.J. and de Borst, R. (1994), "Dispersive properties of gradient and rate-dependent media", Mech. Mater., 18(2), 131-149.   DOI   ScienceOn
2 Souza, R.A. (2010), Experimental and Numerical Analysis of Reinforced Concrete Corbels Strengthened with Fiber Reinforced Polymers, Computational Modelling of Concrete Structures, (Eds. N. Bicanic, R. de Borst, H. Mang, G. Meschke), Taylor and Francis Group, 711-718.
3 Syroka, E., Bobi?ski, J. and Tejchman, J. (2011), "FE analysis of reinforced concrete corbels with enhanced continuum models", Finite Elem. Anal. Des., 47(9), 1066-1078.   DOI   ScienceOn
4 Syroka-Korol, E. (2012), "Experimental and theoretical investigations of size effects in concrete and reinforced concrete beams", PhD Thesis, Gdask University of Technology, Gdask, Poland.
5 Tejchman, J. and Bobi?ski, J. (2013), Continuous and Discontinuous Modeling of Fracture in Concrete Using FEM, Springer, (Eds. W. Wu and R. I. Borja), Berlin-Heidelberg, Germany.
6 Walraven, J. and Lehwalter, N. (1994), "Size effects in short beams loaded in shear", ACI Struct. J., 91(5), 585-593.
7 Abaqus (2004), Theory Manual, Version 5.8, Hibbit, Karlsson & Sorensen Inc.
8 Bazant, Z.P. and Bhat, P.D. (1976), "Endochronic theory of inelasticity and failure of concrete", ASCE J. Eng. Mech., 102(4), 701-722.
9 Bazant, Z.P. and Ozbolt, J. (1990), "Non-local microplane model for fracture, damage and size effect in structures", ASCE J. Eng. Mech., 116(11), 2485-2505.   DOI
10 Bazant, Z. and Planas, J. (1998), Fracture and Size Effect in Concrete and Other Quasi-brittle Materials,CRC Press LLC.
11 Bazant, Z.P. and Jirasek, M. (2002), "Numerical integral formulations of plasticity and damage: survey of progress", ASCE J. Eng. Mech., 128(11), 1119-1149.   DOI   ScienceOn
12 Bobinski, J. and Tejchman, J. (2004), "Numerical simulations of localization of deformation in quasibrittle materials within non-local softening plasticity", Comput. Concr., 1(4), 1-22.   DOI   ScienceOn
13 Bobinski, J. and Tejchman, J. (2013), "A coupled continuous-discontinuous approach to concrete elements", Proceeding of the Int. Conf. Fracture Mechanics of Concrete and Concrete Structures FraMCoS-8, (Eds. van Mier, J.G.M., Ruiz, G., Andrade, C., Yu, R.C., Zhang, X.X.).
14 Brinkgreve, R.B.J. (1994), "Geomaterial models and numerical analysis of softening", Ph.D. Thesis, Delft University of Technology, Delft.
15 Carol, I. and Willam, K. (1996), "Spurious energy dissipation/generation in stiffness recovery models for elastic degradation and damage", Int. J. Solids Struct., 33(20-22), 2939-2957.   DOI   ScienceOn
16 Cervenka, J. and Papanikolaou, V.K. (2008), "Three dimensional combined fracture-plastic material model for concrete", Int. J. Plasticity, 24(12), 2192-2220.   DOI   ScienceOn
17 Committe Euro-International du Beton (1991), "CEB-FIP model code 1990: design code", Bulletin d'inform., 213-224.
18 de Borst, R., Pamin, J. and Geers, M. (1999), "On coupled gradient-dependent plasticity and damage theories with a view to localization analysis", Eur. J. Mech. A/Solids, 18(6), 939-962.   DOI   ScienceOn
19 de Borst, R. and Nauta, P. (1985), "Non-orthogonal cracks in a smeared finite element model", Eng. Comput., 2(1), 35-46.   DOI
20 de Borst, R. (1986), "Non-linear analysis of frictional materials", Ph.D. Thesis, University of Delft, Delft.
21 de Vree, J.H.P., Brekelmans, W.A.M. and van Gils, M.A.J. (1995), "Comparison of non-local approaches in continuum damage mechanics", Comput. Struct., 55(4), 581-588.   DOI   ScienceOn
22 den Uijl, J.A. and Bigaj, A. (1996), "A bond model for ribbed bars based on concrete confinement", Heron, 41(3), 201-226.
23 Dorr, K. (1980), "Ein Beitag zur Berechnung von Stahlbetonscheiben unter Berucksichtigung des Verbundverhaltens", Ph.D Thesis, Darmstadt University, Darmstadt , Germany.
24 Dragon, A. and Mroz, Z. (1979), "A continuum model for plastic-brittle behaviour of rock and concrete", Int. J. Eng. Sci., 17(2), 121-137.   DOI   ScienceOn
25 Geers, M.G.D. (1997), "Experimental analysis and computational modeling of damage and fracture", Ph.D Thesis, Eindhoven University of Technology, Eindhoven, Netherland.
26 Gitman, I.M., Askes, H. and Sluys, L.J. (2008), "Coupled-volume multi-scale modelling of quasi-brittle material", Eur. J. Mech. A/Solids, 27(3), 302-327.   DOI   ScienceOn
27 Haskett, M., Pehlers, D.J. and Mohamed Ali, M.S. (2008), "Local and global bond characteristics of steel reinforcing bars", Eng. Struct., 30(2), 376-383.   DOI   ScienceOn
28 Hsieh, S.S., Ting, E.C. and Chen, W.F. (1982), "Plasticity-fracture model for concrete", Int. J. Solids Struct., 18(3), 181-187.   DOI   ScienceOn
29 Haussler-Combe, U. and Prochtel, P. (2005), "Ein dreiaxiale stoffgesetz fur betone mit normalen und hoher festigkeit", Beton- Stahlbetonbau, 100(1), 56-62.
30 Hordijk, D.A. (1991), "Local approach to fatigue of concrete", PhD Thesis, Delft University of Technology, Delft, Netherland.
31 Hughes, T.J.R. and Winget, J. (1980), "Finite rotation effects in numerical integration of rate constitutive equations arising in large deformation analysis", Int. J. Numer. Methods Eng., 15(12), 1862-1867.   DOI   ScienceOn
32 Ibrahimbegovic, A., Markovic, D. and Gatuing, F. (2003), "Constitutive model of coupled damage-plasticity and its finite element implementation", Eur. J. Finite Elem., 12(4), 381-405.
33 Jirasek, M. and Zimmermann, T. (1998), "Analysis of rotating crack model", ASCE J. Eng. Mech., 124(8), 842-851.   DOI   ScienceOn
34 Jirasek, M. (1999), "Comments on microplane theory", Mechanics of quasi-brittle materials and structures (Eds. Pijaudier-Cabot, G., Bittnar, Z. and Gerard, B.), Hermes Science Publications, 55-77.
35 Jirasek, M. and Marfia, S. (2005), "Non-local damage model based on displacement averaging", Int. J. Numer. Methods Eng., 63(1), 77-102.   DOI   ScienceOn
36 Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", ASCE J. Eng. Mech., 124(8), 892-900.   DOI   ScienceOn
37 Lorrain, M., Maurel, O. and Seffo, M. (1998), "Cracking behaviour of reinforced high-strength concrete tension ties", ACI Struct. J., 95(5), 626-635.
38 Marzec, I., Bobi?ski, J. and Tejchman, J. (2007), "Simulations of crack spacing in reinforced concrete beams using elastic-plasticity and damage with non-local softening", Comput. Concrete, 4(5), 377-403.   DOI   ScienceOn
39 Majewski, T., Bobi?ski, J. and Tejchman, J. (2008), "FE-analysis of failure behaviour of reinforced concrete columns under eccentric compression", Eng. Struct., 30(2), 300-317.   DOI   ScienceOn
40 Mahnken, R. and Kuhl, E. (1999), "Parameter identification of gradient enhanced damage models", Eur. J. Mech. A/Solids, 18(5), 819-835.   DOI   ScienceOn
41 Marzec, I. and Tejchman, J. (2012), "Enhanced coupled elasto-plastic-damage models to describe concrete behaviour in cyclic laboratory tests: Comparison and improvement", Arch. Mech., 64(3), 227-259.
42 Mazars, J. (1986), "A description of micro- and macroscale damage of concrete structures", Eng. Fract. Mech., 25(5-6), 729-737.   DOI   ScienceOn
43 Menetrey, P. and Willam, K.J. (1995), "Triaxial failure criterion for concrete and its generalization", ACI Struct. J., 92(3), 311-318.
44 Meschke, G. and Dumstorff, P. (2007), "Energy-based modeling of cohesive and cohesionless cracks via X-FEM", Comput. Meth. Appl. Mech. Eng., 196(21-24), 2338-2357.   DOI   ScienceOn
45 Moonen, P., Carmeliet, J. and Sluys, L.J. (2008), "A continuous-discontinuous approach to simulate fracture processes", Philos. Mag., 88(28-29), 3281-3298.   DOI   ScienceOn
46 Oliver, J. and Linero, D.L. and Huespe, A.E. and Manzoli, O.L. (2008), "Two-dimensional modeling of material failure in reinforced concrete by means of a continuum strong discontinuity approach", Comput. Meth. Appl. Mech. Eng., 197(5), 332-348.   DOI   ScienceOn
47 Pietruszczak, S., Jiang, J. and Mirza, F.A. (1988), "An elastoplastic constitutive model for concrete", Int. J. Solids Struct., 24(7), 705-722.   DOI   ScienceOn
48 Ooi, E.T. and Yang, Z.J. (2011), "Modelling crack propagation in reinforced concrete using a hybrid finite element-scaled boundary finite element method", Eng. Fract. Mech., 78(2), 252-273.   DOI   ScienceOn
49 Pamin, J. and de Borst, R. (1999), "Stiffness degradation in gradient-dependent coupled damage-plasticity", Arch. Mech., 51(3-4), 419-446.
50 Peerlings, R.H.J., de Borst, R., Brekelmans, W.A.M. and Geers, M.G.D. (1998), "Gradient enhanced damage modelling of concrete fracture", Mech. Cohes.-Frict. Mat., 3(4), 323-342.   DOI   ScienceOn
51 Pijaudier-Cabot, G. and Bazant, Z.P. (1987), "Nonlocal damage theory", ASCE J. Eng. Mech., 113(10), 1512-1533.   DOI   ScienceOn
52 Rabczuk, T. and Zi, G. and Bordas, S. and Nguyen-Xuan, H. (2008), "A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures", Eng. Fract. Mech., 75(16), 4740-4758.   DOI   ScienceOn
53 Ragueneau, F., Borderie, Ch. and Mazars, J. (2000), "Damage model for concrete-like materials coupling cracking and friction", Int. J. Num. Anal. Meth. Geomech., 5(8), 607-625..
54 Rots, J.G. and Blaauwendraad, J. (1989), "Crack models for concrete, discrete or smeared? Fixed, multi-directional or rotating?", Heron, 34(1), 1-59.
55 Simo, K.C. and Ju, J.W. (1987), "Strain- and stress-based continuum damage models - I. Formulation", Int. J. Solids Struct., 23(7), 821-840.   DOI   ScienceOn
56 Simone, A. and Sluys, L.J. (2004), "The use of displacement discontinuities in a rate-dependent medium", Comput. Meth. Appl. Mech. Eng., 193(27-29), 3015-3033.   DOI   ScienceOn
57 Skarzynski, L., Syroka, E. and Tejchman, J. (2011), "Measurements and calculations of the width of the fracture process zones on the surface of notched concrete beams", Strain, 47(s1), 319-332.   DOI   ScienceOn
58 Skarzynski, L. and Tejchman, J. (2010), "Calculations of fracture process zones on meso-scale in notched concrete beams subjected to three-point bending", Eur. J. Mech. A/Solids, 29(4), 746-760.   DOI   ScienceOn