• Title/Summary/Keyword: and size optimization

Search Result 1,526, Processing Time 0.026 seconds

Multiplication optimization technique for Elliptic Curve based sensor network security (Elliptic curve기반 센서네트워크 보안을 위한 곱셈 최적화 기법)

  • Seo, Hwa-Jeong;Kim, Ho-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1836-1842
    • /
    • 2010
  • Sensor network, which is technology to realize the ubiquitous environment, recently, could apply to the field of Mechanic & electronic Security System, Energy management system, Environment monitoring system, Home automation and health care application. However, feature of wireless networking of sensor network is vulnerable to eavesdropping and falsification about message. Presently, PKC(public key cryptography) technique using ECC(elliptic curve cryptography) is used to build up the secure networking over sensor network. ECC is more suitable to sensor having restricted performance than RSA, because it offers equal strength using small size of key. But, for high computation cost, ECC needs to enhance the performance to implement over sensor. In this paper, we propose the optimizing technique for multiplication, core operation in ECC, to accelerate the speed of ECC.

A Study on Optimal Conditions for Washing the Heavy Metal Polluted Soil in Ka-hak Mine (가학광산 중금속 오염토양의 세척 최적조건 연구)

  • Kim, Teayoup;Park, Jayhyun;Park, Juhyun
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.517-526
    • /
    • 2018
  • In order to remove pollutants from the soil in the Ka-hak mine site, this study investigates optimization of the acid washing conditions for the soil. The soil at the site is presumed to be contaminated by diffused heavy-metal-contaminated tailings. The major heavy metal pollutants in the soil are copper, lead, and zinc. Gravels larger than 5mm in size constitute approximately 38% of the soil, and these are the least polluted by heavy metals. On the other hand, it is difficult to reduce the concentration of heavy metals in fine soils, particularly those whose sizes are less than 0.075 mm. The results of the continuous process using a hydro-cyclone show that fine soil particles consisting of at least 20% of the raw soil must be separated before the chemical soil washing process in order to achieve reliable cleaning.

Design of an Anamorphic Aspherical Prism Lens for the Head Mount Display (HMD용 회전 비대칭 비구면 프리즘 렌즈 설계)

  • Park, Seung-Hwan;Lee, Dong-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.4
    • /
    • pp.83-88
    • /
    • 2008
  • Purpose: To design an anamorphic aspherical prism lens for the HMD optical system. Methods: First, we get the initial data, needed in design, which are distances between each surface etc., by analyzing user's demended specifications and by drawing geometrically the shape of prism lens by using CAD. Based on these data and using 'ode V' which is an optical design software, we could progress the optimization in which we treat the coefficients of the anamorphic aspherical surface as the principal variables. To reduce the cost in DTM manufacturing, we would optimize the optical system with the transmitting surface, existed in the direction of video device among 3 surfaces of the prism lens, remaining as a plane. Results: we could design one anamorphic aspherical prism lens which has the finite ray aberration of 15 ${\mu}m$, the distortion of 0.5%, and the MTF value of 0.3 over at 36 lp/mm for the video device of 12 mm ${\times}$ 9 mm size. Conclusions: We designed a prism lens used for HMD. This prism lens has the optical capacities of 15 ${\mu}m$ finite ray aberration and 0.5% distortion for the video device of 12 mm ${\times}$ 9 mm size, and become the optical system having the MTF value of 0.3 over at 36 lp/mm.

  • PDF

Evaluation of beam delivery accuracy for Small sized lung SBRT in low density lung tissue (Small sized lung SBRT 치료시 폐 실질 조직에서의 계획선량 전달 정확성 평가)

  • Oh, Hye Gyung;Son, Sang Jun;Park, Jang Pil;Lee, Je Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.7-15
    • /
    • 2019
  • Purpose: The purpose of this study is to evaluate beam delivery accuracy for small sized lung SBRT through experiment. In order to assess the accuracy, Eclipse TPS(Treatment planning system) equipped Acuros XB and radiochromic film were used for the dose distribution. Comparing calculated and measured dose distribution, evaluated the margin for PTV(Planning target volume) in lung tissue. Materials and Methods : Acquiring CT images for Rando phantom, planned virtual target volume by size(diameter 2, 3, 4, 5 cm) in right lung. All plans were normalized to the target Volume=prescribed 95 % with 6MV FFF VMAT 2 Arc. To compare with calculated and measured dose distribution, film was inserted in rando phantom and irradiated in axial direction. The indexes of evaluation are percentage difference(%Diff) for absolute dose, RMSE(Root-mean-square-error) value for relative dose, coverage ratio and average dose in PTV. Results: The maximum difference at center point was -4.65 % in diameter 2 cm size. And the RMSE value between the calculated and measured off-axis dose distribution indicated that the measured dose distribution in diameter 2 cm was different from calculated and inaccurate compare to diameter 5 cm. In addition, Distance prescribed 95 % dose($D_{95}$) in diameter 2 cm was not covered in PTV and average dose value was lowest in all sizes. Conclusion: This study demonstrated that small sized PTV was not enough covered with prescribed dose in low density lung tissue. All indexes of experimental results in diameter 2 cm were much different from other sizes. It is showed that minimized PTV is not accurate and affects the results of radiation therapy. It is considered that extended margin at small PTV in low density lung tissue for enhancing target center dose is necessary and don't need to constraint Maximum dose in optimization.

On B-spline Approximation for Representing Scattered Multivariate Data (비정렬 다변수 데이터의 B-스플라인 근사화 기법)

  • Park, Sang-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.921-931
    • /
    • 2011
  • This paper presents a data-fitting technique in which a B-spline hypervolume is used to approximate a given data set of scattered data samples. We describe the implementation of the data structure of a B-spline hypervolume, and we measure its memory size to show that the representation is compact. The proposed technique includes two algorithms. One is for the determination of the knot vectors of a B-spline hypervolume. The other is for the control points, which are determined by solving a linear least-squares minimization problem where the solution is independent of the data-set complexity. The proposed approach is demonstrated with various data-set configurations to reveal its performance in terms of approximation accuracy, memory use, and running time. In addition, we compare our approach with existing methods and present unconstrained optimization examples to show the potential for various applications.

A Process Perspective Event-log Analysis Method for Airport BHS (Baggage Handling System) (공항 수하물 처리 시스템 이벤트 로그의 프로세스 관점 분석 방안 연구)

  • Park, Shin-nyum;Song, Minseok
    • The Journal of Bigdata
    • /
    • v.5 no.1
    • /
    • pp.181-188
    • /
    • 2020
  • As the size of the airport terminal grows in line with the rapid growth of aviation passengers, the advanced baggage handling system that combines various data technologies has become an essential element in order to handle the baggage carried by passengers swiftly and accurately. Therefore, this study introduces the method of analyzing the baggage handling capacity of domestic airports through the latest data analysis methodology from the process point of view to advance the operation of the airport BHS and the main points based on event log data. By presenting an accurate load prediction method, it can lead to advanced BHS operation strategies in the future, such as the preemptive arrangement of resources and optimization of flight-carrousel scheduling. The data used in the analysis utilized the APIs that can be obtained by searching for "Korea Airports Corporation" in the public data portal. As a result of applying the method to the domestic airport BHS simulation model, it was possible to confirm a high level of predictive performance.

Improving TCP Performance by Implicit Priority Packet Forwarding in Mobile IP based Networks with Packet Buffering (모바일 IP 패킷 버퍼링 방식에서 TCP 성능향상을 위한 암시적인 패킷 포워딩 우선권 보장 방안)

  • 허경;이승법;노재성;조성준;엄두섭;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5B
    • /
    • pp.500-511
    • /
    • 2003
  • To prevent performance degradation of TCP due to packet losses in the smooth handoff by the route optimization extension of Mobile IP protocol, a buffering of packets at a base station is needed. A buffering of packets at a base station recovers those packets dropped during handoff by forwarding buffered packets at the old base station to the mobile user. But, when the mobile user moves to a congested base station in a new foreign subnetwork, those buffered packets forwarded by the old base station are dropped and the wireless link utilization performance degrades due to increased congestion by those forwarded packets. In this paper, considering the case that a mobile user moves to a congested base station in a new foreign subnetwork, we propose an Implicit Priority Packet Forwarding to improve TCP performance in mobile networks. In the proposed scheme, the old base station marks a buffered packet as a priority packet during handoff. In addition, RED (Random Early Detection) at the new congested base station does not include priority packets in queue size and does not drop those packets randomly based on average queue size. Simulation results show that wireless link utilization performance of mobile hosts can be improved without modification to Mobile IP protocol by applying proposed Implicit Priority Packet Forwarding.

A Study on the Thermo-Mechanical Fatigue Loading for Time Reduction in Fabricating an Artificial Cracked Specimen (열-기계적 피로하중을 받는 균열시편 제작시간 단축에 관한 연구)

  • Lee, Gyu-Beom;Choi, Joo-Ho;An, Dae-Hwan;Lee, Bo-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.35-42
    • /
    • 2008
  • In the nuclear power plant, early detection of fatigue crack by non-destructive test (NDT) equipment due to the thermal cyclic load is very important in terms of strict safety regulation. To this end, many efforts are exerted to the fabrication of artificial cracked specimen for practicing engineers in the NDT company. The crack of this kind, however, cannot be made by conventional machining, but should be made under thermal cyclic load that is close to the in-situ condition, which takes tremendous time due to the repetition. In this study, thermal loading condition is investigated to minimize the time for fabricating the cracked specimen using simulation technique which predicts the crack initiation and propagation behavior. Simulation and experiment are conducted under an initial assumed condition for validation purpose. A number of simulations are conducted next under a variety of heating and cooling conditions, from which the best solution to achieve minimum time for crack with wanted size is found. In the simulation, general purpose software ANSYS is used for the stress analysis, MATLAB is used to compute crack initiation life, and ZENCRACK, which is special purpose software for crack growth prediction, is used to compute crack propagation life. As a result of the study, the time for the crack to reach the size of 1mm is predicted from the 418 hours at the initial condition to the 319 hours at the optimum condition, which is about 24% reduction.

An Improved RSR Method to Obtain the Sparse Projection Matrix (희소 투영행렬 획득을 위한 RSR 개선 방법론)

  • Ahn, Jung-Ho
    • Journal of Digital Contents Society
    • /
    • v.16 no.4
    • /
    • pp.605-613
    • /
    • 2015
  • This paper addresses the problem to make sparse the projection matrix in pattern recognition method. Recently, the size of computer program is often restricted in embedded systems. It is very often that developed programs include some constant data. For example, many pattern recognition programs use the projection matrix for dimension reduction. To improve the recognition performance, very high dimensional feature vectors are often extracted. In this case, the projection matrix can be very big. Recently, RSR(roated sparse regression) method[1] was proposed. This method has been proved one of the best algorithm that obtains the sparse matrix. We propose three methods to improve the RSR; outlier removal, sampling and elastic net RSR(E-RSR) in which the penalty term in RSR optimization function is replaced by that of the elastic net regression. The experimental results show that the proposed methods are very effective and improve the sparsity rate dramatically without sacrificing the recognition rate compared to the original RSR method.

Study on Optimization of Look-Up Table to Reduce Error of Three-dimensional Interpolation (3차원 보간 오차를 개선하기 위한 룩업 테이블의 최적화에 관한 연구)

  • Kim, Joo-Young;Lee, Hak-Sung;Han, Dong-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.12-18
    • /
    • 2007
  • The three dimensional interpolation is widely used for many kinds of color signal transformation such as real-time color gamut mapping. Given input color signal, the output color signal is approximately calculated by the interpolation with the input point and extracted values from a lookup table which is constructed by storing the values of transformation at regularly packed sample points. Apparently, errors of the interpolated approximation heavily depend on the selection of the lookup table. In this paper, a least square method is applied to assigning values of the lookup table with fixed size in order to minimize error of three-dimensional interpolation. The experimental result shows that the proposed method has better interpolation performance.