• 제목/요약/키워드: and size optimization

검색결과 1,514건 처리시간 0.033초

Time-history analysis based optimal design of space trusses: the CMA evolution strategy approach using GRNN and WA

  • Kaveh, A.;Fahimi-Farzam, M.;Kalateh-Ahani, M.
    • Structural Engineering and Mechanics
    • /
    • 제44권3호
    • /
    • pp.379-403
    • /
    • 2012
  • In recent years, the need for optimal design of structures under time-history loading aroused great attention in researchers. The main problem in this field is the extremely high computational demand of time-history analyses, which may convert the solution algorithm to an illogical one. In this paper, a new framework is developed to solve the size optimization problem of steel truss structures subjected to ground motions. In order to solve this problem, the covariance matrix adaptation evolution strategy algorithm is employed for the optimization procedure, while a generalized regression neural network is utilized as a meta-model for fitness approximation. Moreover, the computational cost of time-history analysis is decreased through a wavelet analysis. Capability and efficiency of the proposed framework is investigated via two design examples, comprising of a tower truss and a footbridge truss.

개념최적화와 절판이론 (Concept Optimization and Folded Plate Theory)

  • Kim, Duk-Hyun;Won, Chi-Moon;Han, Bong-Gu
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.211-214
    • /
    • 2002
  • Almost all buildings/infrastructures made of composite materials are fabricated without proper design. Unlike airplane or automobile parts, prototype test is impossible. One cannot destroy 10 story buildings or 100-meter long bridges. People try to build 100-story buildings or several thousand meter long bridges. In order to realize "composites in construction", the following subjects must be studied in detail, for his design. Concept optimization, Simple method of analysis, Folded plate theory, Size effects in failure, and Critical frequency. Unlike the design procedure with conventional materials, his design should include material design, selection of manufacturing methods, and quality control methods, in addition to the fabrication method. In this paper, concept optimization and folded plate theory are presented for practicing engineers.engineers.

  • PDF

트럭 장착용 너클크레인의 경량화를 위한 구조 (Structural Optimization of the Knuckle Crane Installed in Truck)

  • 임헌봉;신문균;양현익
    • 한국생산제조학회지
    • /
    • 제21권2호
    • /
    • pp.344-348
    • /
    • 2012
  • The knuckle crane design in Korea has been performed by assuming a cantilever beam type structure and numerically analyzing design data and finally improving the stiffness by replacing material. In our study, a complete finite element model of the knuckle crane is constructed and finite element analysis is conducted using Optistruct. Structural optimization to reduce the weight of the knuckle crane is processed by applying maximum loading condition at the largest radius of motion, which is the worst case of loading condition. As the results, existing over stiff design in a knuckle crane is corrected to meet a desired design limit and overall weight is reduced, which eventually leads to a reduction of $CO_2$ emission.

재료조각법을 이용한 위상최적설계 (Topology Optimization Through Material Cloud Method)

  • 장수영;윤성기
    • 대한기계학회논문집A
    • /
    • 제29권1호
    • /
    • pp.22-29
    • /
    • 2005
  • A material cloud method, which is a new topology optimization method, is presented. In MCM, an optimal structure can be found out by manipulating sizes and positions of material clouds, which are lumps of material with specified properties. A numerical analysis for a specific distribution of material clouds is carried out using fixed background finite element mesh. Optimal material distribution can be element-wisely extracted from material clouds' distribution. In MCM, an expansion-reduction procedure of design domain for finding out better optimal solution can be naturally realized. Also the convergence of material distribution is faster and well-defined material distribution with fewer intermediate densities can be obtained. In addition, the control of minimum-member sizes in the material distribution can be realized to some extent. In this paper, basic concept of MCM is introduced, and formulation and optimization results of MCM are compared with those of the traditional density distribution method(DDM).

감항성을 고려한 항공기 제어법칙의 파라미터 최적화 (The parameter optimization of aircraft's control law from the viewpoint of some airworthiness requirements)

  • 유창선;;김종철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1651-1654
    • /
    • 1997
  • Restiction of vertical and lateral accelerations is one of the very important requierments which has to be satisfied on the practice of automatically controlled flights of the civil aviation passenger planes. This goal could be achived on the basis of the optimization procedure using specilly constructed quadratic performance index. In the report the application of this procedure to the parameteric optimization of the control laws with known structure for autopilot of midium-size aircraft in the level flight model is demonstrated. Performance index is calculted on the basis of the controllability grammian. Results of simulation of control processes in the lateral and longitudinal channels sre represented.

  • PDF

열탄성 구조물의 최적설계 (Design Optimization of Thermo-Elastic Structure)

  • 조희근;박영원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.381-384
    • /
    • 2000
  • Multi-disciplinary optimization design concept can provide a solution to many engineering problems. In the field of structural analysis, much development of size or topology optimization has been achieved in the application of research. This paper demonstrates an optimum design of a multi-layer cylindrical tube which behaves thermoelastically. A multi-layer cylindrical tube that has several different material properties at each layer is optimized within allowable stress and temperature range when mechanical and thermal loads are applied simultaneously. To analyze these problems using an efficient and precise method, the optimization theories are adopted to perform thermoelastic finite element analysis.

  • PDF

차체용 드로우 다이의 블랭크 홀더 굽힘 변형 해석 (Analysis on the Bending Deflection of the Blank Holder in Automotive Body Panel Draw Die)

  • 인정제;신용승;김헌영;김재우;송명환;박진수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.249-254
    • /
    • 2000
  • The contact forces between die components for the drawing of large size automotive panels introduce elastic deflections of the die components. Due to the deflections, the gap between blank holder and die varies locally resulting in nonuniform material flow. Such a nonuniform die gap usually requires correcting operation, so called die spotting, which is time consuming trial and error process. To reduce the die spotting time, the optimization of the blank holder bending deflection is needed. In this paper, we implemented an analysis procedure to predict the blank holder deflection. The analysis procedure and design of experiments techniques are applied to the optimization of balance block heights. The optimization results can be used as guidelines in actual die spotting process.

  • PDF

위상 최적화 방법에 의해 설계된 대구경 구조물 (The Large Optical Structure Designed by Topology Optimization Methodology)

  • 이정익
    • 한국산학기술학회논문지
    • /
    • 제10권9호
    • /
    • pp.2179-2182
    • /
    • 2009
  • 최근, 광학기계시스템에 새로운 구조 모델은 저비용, 고성능 및 품질의 개념설계에서 출발해야 할 필요성이 있다. 이런 관점에서, 기계적 구조의 개념설계와 연관된 구조적-위상적 형상은 구조적 강성과 감량과 같은 시스템 성능에 큰 영향을 끼친다. 본 연구에서는, 최적설계방법이 대구경 구조물의 설계단계에 제시되었다. 먼저, 위상 최적화법을 이용하여 구조물의 최적 배열과 보강방안을 얻었고, 사이즈 최적화와 다분야 최적기법을 사용한 세부 설계를 수행하였다. 그 일례로, 이 방법들을 대구경 구조물 설계에 적용하였다.

Employing Response Surface Methodology for optimization of slow release Biostimulant ball in contaminated coastal sediments in Busan, South Korea

  • Song, Young-Chae;Subha, Bakthacachallam;Woo, Jung Hui
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2014년도 추계학술대회
    • /
    • pp.87-88
    • /
    • 2014
  • The Coastal sediment is highly contaminated due to ship transportation, industries discharges and urban sources. Various contaminants release into seawater and settle in marine sediment and it significantly affect marine eco system. In the present study evaluated the optimization of slow release biostimulant ball (BSB) in coastal sediment in busan. The effective variables like BSB size, distance and month variables on VS reduction was determined by using Response surface methodology(RSM). The analysis of variance (ANOVA) and coefficient determination (R2) of VS was 0.9369 and maximum reduction of VS was obtained in 3cm ball size and 5.5cm distance and 4 month interval time. This result revealed that the BSB in effective VS reduction in coastal sediment.

  • PDF

지오데식 돔의 구조최적화에 대한 연구 (A Study on the Structural Optimization for Geodesic Dome)

  • 이상진;배정은
    • 한국공간구조학회논문집
    • /
    • 제8권4호
    • /
    • pp.47-55
    • /
    • 2008
  • 이 논문은 지오데식 돔 구조물의 구조최적화에 대한 연구내용과 관련이론 그리고 수치해석결과를 기술하고 있다. 지오데식 돔의 공간 효율성을 알아보기 위해 돔의 기저인 정이십면체의 외피면적과 내부공간의 비율을 계산하고 건축구조물에서 나타나는 다른 입방체의 값과 정량적으로 비교하였다. 지오데식 돔을 형성하기 위한 절차를 세부적으로 정리하고 이를 프로그래밍하여 설계최적화프로그램 ISADO-OPT에 연동하였다. 본 연구에서는 반구 형태의 지오데식 돔이 집중하중에 효율적으로 저항할 수 있는 최적의 부재크기 패턴을 조사하기 위하여 수학적 프로그래밍 기법을 도입하였다. 이때 최소화해야하는 돔 전체 부재의 중량을 목적함수로 이용하고 하중이 가해지는 절점에서 발생하는 변위 값과 각 부재에서 발생하는 응력 값을 허용치 이하로 제한하는 제약조건으로 사용하였다. 목적함수와 주어진 제약조건을 만족하는 최적 설계변수값을 검색하기 위해 설계변수에 대한 목적함수의 민감도 값을 유한차분법을 이용하여 계산하였다. 본 연구에서 기술한 지오데식돔을 위한 설계최적화 기본이론을 바탕으로 도출한 최적 부재패턴은 향후 돔의 최적설계에 기본 벤치마크테스트결과로 유용하게 사용될 것으로 판단된다.

  • PDF