• Title/Summary/Keyword: and size optimization

Search Result 1,516, Processing Time 0.027 seconds

Time-history analysis based optimal design of space trusses: the CMA evolution strategy approach using GRNN and WA

  • Kaveh, A.;Fahimi-Farzam, M.;Kalateh-Ahani, M.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.3
    • /
    • pp.379-403
    • /
    • 2012
  • In recent years, the need for optimal design of structures under time-history loading aroused great attention in researchers. The main problem in this field is the extremely high computational demand of time-history analyses, which may convert the solution algorithm to an illogical one. In this paper, a new framework is developed to solve the size optimization problem of steel truss structures subjected to ground motions. In order to solve this problem, the covariance matrix adaptation evolution strategy algorithm is employed for the optimization procedure, while a generalized regression neural network is utilized as a meta-model for fitness approximation. Moreover, the computational cost of time-history analysis is decreased through a wavelet analysis. Capability and efficiency of the proposed framework is investigated via two design examples, comprising of a tower truss and a footbridge truss.

Concept Optimization and Folded Plate Theory (개념최적화와 절판이론)

  • Kim, Duk-Hyun;Won, Chi-Moon;Han, Bong-Gu
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.211-214
    • /
    • 2002
  • Almost all buildings/infrastructures made of composite materials are fabricated without proper design. Unlike airplane or automobile parts, prototype test is impossible. One cannot destroy 10 story buildings or 100-meter long bridges. People try to build 100-story buildings or several thousand meter long bridges. In order to realize "composites in construction", the following subjects must be studied in detail, for his design. Concept optimization, Simple method of analysis, Folded plate theory, Size effects in failure, and Critical frequency. Unlike the design procedure with conventional materials, his design should include material design, selection of manufacturing methods, and quality control methods, in addition to the fabrication method. In this paper, concept optimization and folded plate theory are presented for practicing engineers.engineers.

  • PDF

Structural Optimization of the Knuckle Crane Installed in Truck (트럭 장착용 너클크레인의 경량화를 위한 구조)

  • Lim, Hun-Bong;Shin, Moon-Kyun;Yang, Hyun-Ik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.344-348
    • /
    • 2012
  • The knuckle crane design in Korea has been performed by assuming a cantilever beam type structure and numerically analyzing design data and finally improving the stiffness by replacing material. In our study, a complete finite element model of the knuckle crane is constructed and finite element analysis is conducted using Optistruct. Structural optimization to reduce the weight of the knuckle crane is processed by applying maximum loading condition at the largest radius of motion, which is the worst case of loading condition. As the results, existing over stiff design in a knuckle crane is corrected to meet a desired design limit and overall weight is reduced, which eventually leads to a reduction of $CO_2$ emission.

Topology Optimization Through Material Cloud Method (재료조각법을 이용한 위상최적설계)

  • Chang Su-Young;Youn Sung-Kie
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.22-29
    • /
    • 2005
  • A material cloud method, which is a new topology optimization method, is presented. In MCM, an optimal structure can be found out by manipulating sizes and positions of material clouds, which are lumps of material with specified properties. A numerical analysis for a specific distribution of material clouds is carried out using fixed background finite element mesh. Optimal material distribution can be element-wisely extracted from material clouds' distribution. In MCM, an expansion-reduction procedure of design domain for finding out better optimal solution can be naturally realized. Also the convergence of material distribution is faster and well-defined material distribution with fewer intermediate densities can be obtained. In addition, the control of minimum-member sizes in the material distribution can be realized to some extent. In this paper, basic concept of MCM is introduced, and formulation and optimization results of MCM are compared with those of the traditional density distribution method(DDM).

The parameter optimization of aircraft's control law from the viewpoint of some airworthiness requirements (감항성을 고려한 항공기 제어법칙의 파라미터 최적화)

  • ;Tunik, Anatol A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1651-1654
    • /
    • 1997
  • Restiction of vertical and lateral accelerations is one of the very important requierments which has to be satisfied on the practice of automatically controlled flights of the civil aviation passenger planes. This goal could be achived on the basis of the optimization procedure using specilly constructed quadratic performance index. In the report the application of this procedure to the parameteric optimization of the control laws with known structure for autopilot of midium-size aircraft in the level flight model is demonstrated. Performance index is calculted on the basis of the controllability grammian. Results of simulation of control processes in the lateral and longitudinal channels sre represented.

  • PDF

Design Optimization of Thermo-Elastic Structure (열탄성 구조물의 최적설계)

  • 조희근;박영원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.381-384
    • /
    • 2000
  • Multi-disciplinary optimization design concept can provide a solution to many engineering problems. In the field of structural analysis, much development of size or topology optimization has been achieved in the application of research. This paper demonstrates an optimum design of a multi-layer cylindrical tube which behaves thermoelastically. A multi-layer cylindrical tube that has several different material properties at each layer is optimized within allowable stress and temperature range when mechanical and thermal loads are applied simultaneously. To analyze these problems using an efficient and precise method, the optimization theories are adopted to perform thermoelastic finite element analysis.

  • PDF

Analysis on the Bending Deflection of the Blank Holder in Automotive Body Panel Draw Die (차체용 드로우 다이의 블랭크 홀더 굽힘 변형 해석)

  • 인정제;신용승;김헌영;김재우;송명환;박진수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.249-254
    • /
    • 2000
  • The contact forces between die components for the drawing of large size automotive panels introduce elastic deflections of the die components. Due to the deflections, the gap between blank holder and die varies locally resulting in nonuniform material flow. Such a nonuniform die gap usually requires correcting operation, so called die spotting, which is time consuming trial and error process. To reduce the die spotting time, the optimization of the blank holder bending deflection is needed. In this paper, we implemented an analysis procedure to predict the blank holder deflection. The analysis procedure and design of experiments techniques are applied to the optimization of balance block heights. The optimization results can be used as guidelines in actual die spotting process.

  • PDF

The Large Optical Structure Designed by Topology Optimization Methodology (위상 최적화 방법에 의해 설계된 대구경 구조물)

  • Lee, Jeong-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2179-2182
    • /
    • 2009
  • Recently, the development of new structural model in optical mechanical system is required to be started from the conceptual design with low cost, high performance and quality. In this point, a structural-topological shape of system concerned with conceptual design of mechanical structure has a great effect on performance of the system such as the structural rigidities and weight reduction. In this paper, the optimization design methodologies are presented in the design stages of large optical structure. First, using topology optimization, we obtain the optimal layout and the reinforcement of structure, and then carry out the detail designs using size optimization and multidisciplinary optimization technique. As an example, these methods were applied to the design of large mirror structure.

Employing Response Surface Methodology for optimization of slow release Biostimulant ball in contaminated coastal sediments in Busan, South Korea

  • Song, Young-Chae;Subha, Bakthacachallam;Woo, Jung Hui
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.10a
    • /
    • pp.87-88
    • /
    • 2014
  • The Coastal sediment is highly contaminated due to ship transportation, industries discharges and urban sources. Various contaminants release into seawater and settle in marine sediment and it significantly affect marine eco system. In the present study evaluated the optimization of slow release biostimulant ball (BSB) in coastal sediment in busan. The effective variables like BSB size, distance and month variables on VS reduction was determined by using Response surface methodology(RSM). The analysis of variance (ANOVA) and coefficient determination (R2) of VS was 0.9369 and maximum reduction of VS was obtained in 3cm ball size and 5.5cm distance and 4 month interval time. This result revealed that the BSB in effective VS reduction in coastal sediment.

  • PDF

A Study on the Structural Optimization for Geodesic Dome (지오데식 돔의 구조최적화에 대한 연구)

  • Lee, Sang-Jin;Bae, Jung-Eun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.4
    • /
    • pp.47-55
    • /
    • 2008
  • This paper deals with basic theories and some numerical results on structural optimization for geodesic dome. First of all, the space efficiency of geodesic dome is investigated by using the ratio of icosahedron's surface area to the internal volume enclosed by it. The procedure how to create the geodesic dome is also provided in systematic way and implemented and utilized into the design optimization code ISADO-OPT. The mathematical programming technique is introduced to find out the optimum pattern of member size of geodesic dome against a point load. In this study, total weight of structure is considered as the objective function to be minimized and the displacement occurred at loading point and member stresses of geodesic dome are used as the constraint functions. The finite difference method is used to calculate the design sensitivity of objective function with respect to design variables. The SLP, SQP and MFDM available in the optimizer DoT is used to search optimum member size patterns of geodesic dome. It is found to be that the optimum member size pattern can be efficiently obtained by using the proposed design optimization technique and numerical results can be used as benchmark test as a basic reference solution for design optimization of dome structures.

  • PDF