• 제목/요약/키워드: and removal force

검색결과 386건 처리시간 0.04초

Effect of abutment angulation in the retention and durability of three overdenture attachment systems: An in vitro study

  • Aroso, Carlos;Silva, Antonio Sergio;Ustrell, Raul;Mendes, Jose Manuel;Braga, Ana Cristina;Berastegui, Esther;Escuin, Tomas
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권1호
    • /
    • pp.21-29
    • /
    • 2016
  • This in vitro study investigated and compared the durability and retention of three types of attachments. MATERIALS AND METHODS. Three commercially available attachments were investigated: $Clix^{(R)}$, Dalbo-$Plus^{(R)}$ and $Locator^{(R)}$. In total, 72 samples of these attachments were placed in the acrylic resin forms and subjected to mechanical testing (5400 cycles of insertion and removal) over the respective ball or Locator abutments immersed in artificial saliva at pH 7 and $37^{\circ}C$. The abutments were placed at angulations of $0^{\circ}$, $10^{\circ}$ and $20^{\circ}$. The retention force was recorded at the beginning and after 540, 1080, 2160, 3240, 4320 and 5400 insertion-removal cycles. RESULTS. The results revealed that there were significant differences in the average values of the insertion/removal force due to angulation ($F_{(2.48)}=343619$, P<.05) and the type of attachment ($F_{(7.48)}=23.220$, P<.05). CONCLUSION. Greater angulation of the abutments was found to influence the retention capacity of the attachments, and the fatigue test simulating 5 years of denture insertion and removal did not produce wear in the metal abutments.

Experimental and Numerical Analysis of A Novel Ceria Based Abrasive Slurry for Interlayer Dielectric Chemical Mechanical Planarization

  • Zhuanga, Yun;Borucki, Leonard;Philipossian, Ara;Dien, Eric;Ennahali, Mohamed;Michel, George;Laborie, Bernard;Zhuang, Yun;Keswani, Manish;Rosales-Yeomans, Daniel;Lee, Hyo-Sang;Philipossian, Ara
    • Transactions on Electrical and Electronic Materials
    • /
    • 제8권2호
    • /
    • pp.53-57
    • /
    • 2007
  • In this study, a novel slurry containing ceria as the abrasive particles was analyzed in terms of its frictional, thermal and kinetic attributes for interlayer dielectric (ILD) CMP application. The novel slurry was used to polish 200-mm blanket ILD wafers on an $IC1000_{TM}$ K-groove pad with in-situ conditioning. Polishing pressures ranged from 1 to 5 PSI and the sliding velocity ranged from 0.5 to 1.5 m/s. Shear force and pad temperature were measured in real time during the polishing process. The frictional analysis indicated that boundary lubrication was the dominant tribological mechanism. The measured average pad leading edge temperature increased from 26.4 to $38.4\;^{\circ}C$ with the increase in polishing power. The ILD removal rate also increased with the polishing power, ranging from 400 to 4000 A/min. The ILD removal rate deviated from Prestonian behavior at the highest $p{\times}V$ polishing condition and exhibited a strong correlation with the measured average pad leading edge temperature. A modified two-step Langmuir-Hinshelwood kinetic model was used to simulate the ILD removal rate. In this model, transient flash heating temperature is assumed to dominate the chemical reaction temperature. The model successfully captured the variable removal rate behavior at the highest $p{\times}V$ polishing condition and indicates that the polishing process was mechanical limited in the low $p{\times}V$ polishing region and became chemically and mechanically balanced with increasing polishing power.

주축 모터 출력 특성에 근거한 무인 선삭 가공 기술 (An Unmanned Turning Process Technique Based on Spindle Motor Power Characteristics)

  • 박장호;허건수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.8-13
    • /
    • 2001
  • In the turning process, the feed is usually selected by a machining operator considering workpiece, cutting tool and depth of cut. Even if this selection can avoid power saturation or tool breakage, it is usually conservative compared to the capacity of the machine tools and can reduce the productivity significantly. This paper proposes a selection method of the feed and the reference cutting force based on MRR(material removal rate), maximum spindle power and specific energy. In order to estimate and control cutting force accurately in transient and steady state, this study utilizes a synthesized cutting force estimation method and a Fuzzy controller. The experimental results present that these systems can be useful for the FMS(flexible manufacturing system) and unmanned automation system.

  • PDF

주축 모터 출력 특성에 근거한 무인 선삭 제어 (Unmanned Turning Process Control Based on Spindle-Motor Power Characteristics)

  • 박장호;홍성함;이병휘;허건수
    • 대한기계학회논문집A
    • /
    • 제26권7호
    • /
    • pp.1446-1452
    • /
    • 2002
  • In the turning process, the feed is usually selected by a machining operator considering workpiece, cutting tool and depth of cut. Even if this selection can avoid power saturation or tool breakage, it is usually conservative compared to the capacity of the machine tools and can reduce the productivity significantly. This paper proposes a selection method of the feed and the reference cutting force based on MRR(material removal rate), maximum spindle power and specific energy. In order to estimate and control cutting force accurately in transient and steady state, this study utilizes a synthesized cutting force estimation method and a Fuzzy controller. The experimental results show that these systems can be useful for the unmanned turning process.

화학 기계적 연마 시 발생하는 온도특성과 마찰력에 관한 연구 (A study of temperature behavior and friction force generated by chemical mechanical polishing)

  • 권대희;김형재;정해도;이응숙;신영재
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.939-942
    • /
    • 1997
  • In chemical mechanical polishing(CMP) there are many factors affecting the results. Temperature is one of the factors and it affects the removal rate. That is, the higher it arise, the more the material is removed. But the detailed temperature behavior is not discovered. In this study, we discover the distribution of temperature across the pad where the wafer has just been polished. And then we reveal the cause of the result in connection with the mechanical structure. In addition, we also discover the relationship of the friction force and normal force. With the result of two forces, we get the friction coefficient and obtain the contact model of the wafer and pad.

  • PDF

CMP에서의 스틱-슬립 마찰특성에 관한 연구 (A Study on the Characteristics of Stick-slip Friction in CMP)

  • 이현섭;박범영;서헌덕;박기현;정해도
    • 한국전기전자재료학회논문지
    • /
    • 제18권4호
    • /
    • pp.313-320
    • /
    • 2005
  • Stick-slip friction is one of the material removal mechanisms in tribology. It occurs when the static friction force is larger than the dynamic friction force, and make the friction curve fluctuated. In the friction monitoring of chemical mechanical polishing(CMP), the friction force also vibrates just as stick-slip friction. In this paper, an attempt to show the similarity between stick-slip friction and the friction of CMP was conducted. The prepared hard pa(IC1000/Suba400 stacked/sup TM/) and soft pad(Suba400/sup TM/) were tested with SiO₂ slurry. The friction force was measured by piezoelectric sensor. According to this experiment, it was shown that as the head and table velocity became faster, the stick-slip time shortened because of the change of real contact area. And, the gradient of stick-slip period as a function of head and table speed in soft pad was more precipitous than that of hard one. From these results, it seems that the fluctuating friction force in CMP is stick-slip friction caused by viscoelastic behavior of the pad and the change of real contact area.

볼엔드밀 공구에 의한 사각형상 가공시 공구 휨에 따른 절삭력 특성 (Cutting Force Characteristics and Tool Deflection When Machining Rectangular Shapes with a Ball End Mill)

  • 김인수;김상현;이동섭;왕덕현
    • 한국기계가공학회지
    • /
    • 제18권6호
    • /
    • pp.26-32
    • /
    • 2019
  • Ball end mills used for high-speed and high-precision machining require longer machining time than flat end mills or face cutters, since the tool diameter is limited and the rigidity is reduced by the characteristics of the tool's cutting edge: at the top end of the tool, the cutting speed approaches zero and hardly removes any material. Because there is little material removal at the top end of the ball end mill, the outer cutting edge performs the majority of the work; this irregular cutting force deforms the tool and shortens its life. In this study, we attached an eddy-current sensor to a tool to measure the deformation from the cutting force and we used a tool dynamometer to measure the cutting force. We found that the change in cutting force is dependent on the change in feed rate during square-shaped processing and, as the feed rate is accelerated, the cutting force also increases. Higher cutting forces increase tool deformation.

Design of air-cooled waste heat removal system with string type direct contact heat exchanger and investigation of oil film instability

  • Moon, Jangsik;Jeong, Yong Hoon;Addad, Yacine
    • Nuclear Engineering and Technology
    • /
    • 제52권4호
    • /
    • pp.734-741
    • /
    • 2020
  • A new air-cooled waste heat removal system with a direct contact heat exchanger was designed for SMRs requiring 200 MW of waste heat removal. Conventional air-cooled systems use fin structure causing high thermal resistance; therefore, a large cooling tower is required. The new design replaces the fin structure with a vertical string type direct contact heat exchanger which has the most effective performance among tested heat exchangers in a previous study. The design results showed that the new system requires a cooling tower 50% smaller than that of the conventional system. However, droplet formation on a falling film along a string caused by Rayleigh-Plateau instability decreases heat removal performance of the new system. Analysis of Rayleigh-Plateau instability considering drag force on the falling film surface was developed. The analysis results showed that the instability can be prevented by providing thick string. The instability is prevented when the string radius exceeds the capillary length of liquid by a factor of 0.257 under stagnant air and 0.260 under 5 m/s air velocity.

선형 Roll-CMP에서 공정변수에 관한 통계적 분석 (Statistical Analysis on Process Variables in Linear Roll-CMP)

  • 왕함;이현섭;정해도
    • Tribology and Lubricants
    • /
    • 제30권3호
    • /
    • pp.139-145
    • /
    • 2014
  • Nowadays, most micro-patterns are manufactured during flow line production. However, a conventional rotary chemical mechanical polishing (CMP) system has a limited throughput for the fabrication of large and flexible electronics. To overcome this problem, we propose a novel linear roll-CMP system for the planarization of large-area electronics. In this paper, we present a statistical analysis on the linear roll-CMP process of copper-clad laminate (CCL) to determine the impacts of process parameters on the material removal rate (MRR) and its non-uniformity (NU). In the linear roll-CMP process, process parameters such as the slurry flow rate, roll speed, table feed rate, and down force affect the MRR and NU. To determine the polishing characteristics of roll-CMP, we use Taguchi's orthogonal array L16 (44) for the experimental design and F-values obtained by the analysis of variance (ANOVA). We investigate the signal-to-noise (S/N) ratio to identify the prominent control parameters. The "higher is better" for the MRR and "lower is better" for the NU were selected for obtaining optimum CMP performance characteristics. The experimental and statistical results indicate that the down force and roll speed mainly affect the MRR and the down force and table feed rate determine the NU in the linear roll-CMP process. However, over 186.3 N of down force deteriorates the NU because of the bending of substrate. Roll speed has little relationship to the NU and the table feed rate does not impact on the MRR. This study provides information on the design parameter of roll-CMP machine and process optimization.

향상된 절삭력 모델 기반의 NC 코드 최적화 (NC Code Optimization Based on an Improved Cutting Force Model)

  • 이한울;고정훈;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.37-42
    • /
    • 1997
  • Off-line feed rate scheduling is an advanced methodology to automatically determine optimum feed rates for the optimization of NC code. However, the present feed rate scheduling systems have lim~tations to generate the optimized NC codes because they use the material removal rate or non-generalized cutting force model. In this paper, a feed rate scheduling system based on an improved cutting force model that can predrct cutting forces exactly in general machining was presented. Original blocks of NC code were divided to small ones with the modified feed rates to adjust the peak value of cutting forces to a constant vale. The characteristic of acceleration and deceleration for a given machrne tool was considered when off-line feed rate scheduhng was performed. Software for the NC code optimization was developed and applied to pocket machining simulation.

  • PDF