• Title/Summary/Keyword: and convex functions.

Search Result 327, Processing Time 0.026 seconds

Polylogarithms and Subordination of Some Cubic Polynomials

  • Manju Yadav;Sushma Gupta;Sukhjit Singh
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.1
    • /
    • pp.57-68
    • /
    • 2024
  • Let V3(z, f) and 𝜎(1)3(z, f) be the cubic polynomials representing, respectively, the 3rd de la Vallée Poussin mean and the 3rd Cesàro mean of order 1 of a power series f(z). If 𝒦 denotes the usual class of convex univalent functions in the open unit disk centered at the origin, we show that, in general, V3(z, f) ⊀ 𝜎(1)3(z,f), for all f ∈ 𝒦. Making use of polylogarithms, we identify a transformation, Λ : 𝒦 → 𝒦, such that V3(z, Λ(f)) ≺ 𝜎(1)3(z, Λ(f)) for all f ∈ 𝒦. Here '≺' stands for subordination between two analytic functions.

COINCIDENCE THEOREMS FOR NONCOMPACT ℜℭ-MAPS IN ABSTRACT CONVEX SPACES WITH APPLICATIONS

  • Yang, Ming-Ge;Huang, Nan-Jing
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1147-1161
    • /
    • 2012
  • In this paper, a coincidence theorem for a compact ${\Re}\mathfrak{C}$-map is proved in an abstract convex space. Several more general coincidence theorems for noncompact ${\Re}\mathfrak{C}$-maps are derived in abstract convex spaces. Some examples are given to illustrate our coincidence theorems. As applications, an alternative theorem concerning the existence of maximal elements, an alternative theorem concerning equilibrium problems and a minimax inequality for three functions are proved in abstract convex spaces.

SOME NEW INTEGRAL MEANS INEQUALITIES AND INCLUSION PROPERTIES FOR A CLASS OF ANALYTIC FUNCTIONS INVOLVING CERTAIN INTEGRAL OPERATORS

  • Raina, R.K.;Bansal, Deepak
    • East Asian mathematical journal
    • /
    • v.24 no.4
    • /
    • pp.347-358
    • /
    • 2008
  • In this paper we investigate integral means inequalities for the integral operators $Q_{\lambda}^{\mu}$ and $P_{\lambda}^{\mu}$ applied to suitably normalized analytic functions. Further, we obtain some neighborhood and inclusion properties for a class of functions $G{\alpha}({\phi}, {\psi})$ (defined below). Several corollaries exhibiting the applications of the main results are considered in the concluding section.

  • PDF

RELATION BETWEEN DEMYANOV DIFFERENCE AND MINKOWSKI DIFFERENCE OF CONVEX COMPACT SUBSETS IN $R^2$

  • Song, Chun-Ling;Xia, Zun-Quan;Zhang, Li-Wei;Li, Shu-Yang
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.353-359
    • /
    • 2007
  • A necessary and sufficient condition for Demyanov difference and Minkowski difference of compact convex subsets in $R^2$ being equal is given in this paper. Several examples are computed by Matlab to test our result. The necessary and sufficient condition makes us to compute Clarke subdifferential by quasidifferential for a special of Lipschitz functions.

Uniformly Close-to-Convex Functions with Respect to Conjugate Points

  • Bukhari, Syed Zakar Hussain;Salahuddin, Taimoor;Ahmad, Imtiaz;Ishaq, Muhammad;Muhammad, Shah
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.2
    • /
    • pp.229-242
    • /
    • 2022
  • In this paper, we introduce a new subclass of k-uniformly close-to-convex functions with respect to conjugate points. We study characterization, coefficient estimates, distortion bounds, extreme points and radii problems for this class. We also discuss integral means inequality with the extremal functions. Our findings may be related with the previously known results.

Bohr's Phenomenon for Some Univalent Harmonic Functions

  • Singla, Chinu;Gupta, Sushma;Singh, Sukhjit
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.2
    • /
    • pp.243-256
    • /
    • 2022
  • In 1914, Bohr proved that there is an r0 ∈ (0, 1) such that if a power series ∑m=0 cmzm is convergent in the open unit disc and |∑m=0 cmzm| < 1 then, ∑m=0 |cmzm| < 1 for |z| < r0. The largest value of such r0 is called the Bohr radius. In this article, we find Bohr radius for some univalent harmonic mappings having different dilatations. We also compute the Bohr radius for functions that are convex in one direction.

A FEW RESULTS ON JANOWSKI FUNCTIONS ASSOCIATED WITH k-SYMMETRIC POINTS

  • Al Sarari, Fuad S;Latha, Sridhar;Darus, Maslina
    • Korean Journal of Mathematics
    • /
    • v.25 no.3
    • /
    • pp.389-403
    • /
    • 2017
  • The purpose of the present paper is to introduce and study new subclasses of analytic functions which generalize the classes of Janowski functions with respect to k-symmetric points. We also study certain interesting properties like covering theorem, convolution condition, neighborhood results and argument theorem.

Robust EOQ Models with Decreasing Cost Functions (감소하는 비용함수를 가진 Robust EOQ 모형)

  • Lim, Sung-Mook
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.2
    • /
    • pp.99-107
    • /
    • 2007
  • We consider (worst-case) robust optimization versions of the Economic Order Quantity (EOQ) model with decreasing cost functions. Two variants of the EOQ model are discussed, in which the purchasing costs are decreasing power functions in either the order quantity or demand rate. We develop the corresponding worst-case robust optimization models of the two variants, where the parameters in the purchasing cost function of each model are uncertain but known to lie in an ellipsoid. For the robust EOQ model with the purchasing cost being a decreasing function of the demand rate, we derive the analytical optimal solution. For the robust EOQ model with the purchasing cost being a decreasing function of the order quantity, we prove that it is a convex optimization problem, and thus lends itself to efficient numerical algorithms.

ON A FIRST ORDER STRONG DIFFERENTIAL SUBORDINATION AND APPLICATION TO UNIVALENT FUNCTIONS

  • Aghalary, Rasoul;Arjomandinia, Parviz
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.445-454
    • /
    • 2022
  • Using the concept of the strong differential subordination introduced in [2], we find conditions on the functions θ, 𝜑, G, F such that the first order strong subordination θ(p(z)) + $\frac{G(\xi)}{\xi}$zp'(z)𝜑(p(z)) ≺≺ θ(q(z)) + F(z)q'(z)𝜑(q(z), implies p(z) ≺ q(z), where p(z), q(z) are analytic functions in the open unit disk 𝔻 with p(0) = q(0). Corollaries and examples of the main results are also considered, some of which extend and improve the results obtained in [1].