SOME NEW INTEGRAL MEANS INEQUALITIES AND INCLUSION PROPERTIES FOR A CLASS OF ANALYTIC FUNCTIONS INVOLVING CERTAIN INTEGRAL OPERATORS

R. K. Raina and Deepak Bansal

Abstract

In this paper we investigate integral means inequalities for the integral operators Q_{λ}^{μ} and P_{λ}^{μ} applied to suitably normalized analytic functions. Further, we obtain some neighborhood and inclusion properties for a class of functions $G_{\alpha}(\phi, \psi)$ (defined below). Several corollaries exhibiting the applications of the main results are considered in the concluding section.

1. Introduction and Preliminaries

Let \mathcal{A} denote the class of functions $f(z)$ normalized by $f(0)=f^{\prime}(0)-1=0$, and analytic in the open unit disk $\mathbb{U}=\{z: z \in \mathbb{C},|z|<1\}$, then $f(z)$ can be expressed as

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

We denote by $\mathcal{M}(\alpha), \mathcal{N}(\alpha)$ and $\Lambda_{\alpha}(\lambda)$ the three subclasses of the class \mathcal{A}, which are defined (for $\alpha>1$) as follows (see [9]):

$$
\begin{array}{r}
\mathcal{M}(\alpha)=\left\{f: f \in \mathcal{A}, \Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)<\alpha(\alpha>1 ; z \in \mathbb{U})\right\}, \\
\mathcal{N}(\alpha)=\left\{f: f \in \mathcal{A}, \Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)<\alpha(\alpha>1 ; z \in \mathbb{U})\right\} \tag{1.3}
\end{array}
$$

and

$$
\begin{equation*}
\Lambda_{\alpha}(\lambda)=\left\{f: f \in \mathcal{A}, \Re\left(\frac{D^{\lambda+1} f(z)}{D^{\lambda} f(z)}\right)<\alpha(\alpha>1 ; \lambda>-1 ; z \in \mathbb{U})\right\} \tag{1.4}
\end{equation*}
$$

where the operator D^{λ} involved in (1.4) is the familiar Ruscheweyh operator [10]. The classes $\mathcal{M}(\alpha)$ and $\mathcal{N}(\alpha)$ were studied recently by Owa and Nishiwaki

Received November 21, 2007; Accepted August 27, 2008.
2000 Mathematics Subject Classification. 30C45.
Key words and phrases. Hadamard product, subordination, Ruscheweyh derivative, analytic functions, starlike functions and convex functions.
[6], and also by Owa and Srivastava [8]. In fact, for $1<\alpha \leqq 4 / 3$, these classes were investigated earlier by Uralegaddi et al. [15], and the class $\Lambda_{\alpha}(\lambda)$ was recently studied by Raina and Bansal [9].

It follows from (1.2) and (1.3) that

$$
\begin{equation*}
f(z) \in \mathcal{N}(\alpha) \Leftrightarrow z f^{\prime}(z) \in \mathcal{M}(\alpha) . \tag{1.5}
\end{equation*}
$$

If $f, h \in \mathcal{A}$, where $f(z)$ is given by (1.1), and $h(z)$ is defined by

$$
\begin{equation*}
h(z)=z+\sum_{n=2}^{\infty} c_{n} z^{n} \tag{1.6}
\end{equation*}
$$

then their Hadamard product (or convolution) $f * h$ is defined (as usual) by

$$
\begin{equation*}
(f * h)(z)=z+\sum_{n=2}^{\infty} a_{n} c_{n} z^{n}=(h * f)(z) \tag{1.7}
\end{equation*}
$$

For two functions f and g analytic in \mathbb{U}, we say that the function f is subordinate to g in \mathbb{U} (denoted by $f \prec g$), if there exists a function $w(z)$, analytic in \mathbb{U} with $w(0)=0$, and $|w(z)|<1 \quad(z \in \mathbb{U})$, such that $f(z)=g(w(z))$.

In order to prove our main results, we need the following definitions and lemmas.

Definition 1 (Raina and Bansal [9, p. 3686]). Let the functions $\phi(z)$ and $\psi(z)$ be given by

$$
\begin{equation*}
\phi(z)=z+\sum_{n=2}^{\infty} \lambda_{n} z^{n} \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(z)=z+\sum_{n=2}^{\infty} \mu_{n} z^{n} \tag{1.9}
\end{equation*}
$$

where $\lambda_{n} \geqq \mu_{n}>0(\forall n \in \mathbb{N} \backslash\{1\})$. Then, we say that $f \in \mathcal{A}$ is in $\mathcal{S}_{\alpha}(\phi, \psi)$ if

$$
\begin{equation*}
\Re\left\{\frac{(f * \phi)(z)}{(f * \psi)(z)}\right\}<\alpha \quad(\alpha>1 ; z \in \mathbb{U}) \tag{1.10}
\end{equation*}
$$

provided that $(f * \psi)(z) \neq 0$.
Several new and known subclasses can be obtained from the class $\mathcal{S}_{\alpha}(\phi, \psi)$ by suitably choosing the functions $\phi(z)$ and $\psi(z)$. We mention below some of these subclasses of $\mathcal{S}_{\alpha}(\phi, \psi)$ consisting of functions $f(z) \in \mathcal{A}$.

For example, using (1.8) to (1.10), it evidently follows that

$$
\begin{gather*}
\mathcal{S}_{\alpha}\left(\frac{z}{(1-z)^{\lambda+2}}, \frac{z}{(1-z)^{\lambda+1}}\right)=\Lambda_{\alpha}(\lambda) \tag{1.11}\\
\left(\text { where } \lambda_{n}=\frac{\Gamma(n+\lambda+1)}{\Gamma(n) \Gamma(\lambda+2)} ; \mu_{n}=\frac{\Gamma(n+\lambda)}{\Gamma(n) \Gamma(\lambda+1)}\right)
\end{gather*}
$$

$$
\begin{equation*}
\mathcal{S}_{\alpha}\left(\frac{z}{(1-z)^{2}}, \frac{z}{(1-z)}\right)=\mathcal{M}(\alpha) \quad\left(\text { where } \lambda_{n}=n ; \mu_{n}=1\right) \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\mathcal{S}_{\alpha}\left(\frac{z+z^{2}}{(1-z)^{3}}, \frac{z}{(1-z)^{2}}\right)=\mathcal{N}_{(} \alpha\right) \quad\left(\text { where } \lambda_{n}=n^{2} ; \mu_{n}=n\right) \tag{1.13}
\end{equation*}
$$

Definition 2 (Jung-Kim-Srivastava [3]). Let $f(z) \in \mathcal{A}$ be defined by (1.1), then

$$
\begin{gather*}
Q_{\lambda}^{\mu} f(z)=\binom{\lambda+\mu}{\lambda} \frac{\mu}{z^{\lambda}} \int_{0}^{z} t^{\lambda-1}\left(1-\frac{t}{z}\right)^{\mu-1} f(t) d t \\
=z+\frac{\Gamma(\lambda+\mu+1)}{\Gamma(\lambda+1)} \sum_{n=2}^{\infty} \frac{\Gamma(n+\lambda)}{\Gamma(n+\lambda+\mu)} a_{n} z^{n} \tag{1.14}\\
(\lambda>-1 ; \mu>0 ; f \in \mathcal{A})
\end{gather*}
$$

For $\mu=1$, (1.14) reduces to the generalized Libera operator [7] given by

$$
\begin{equation*}
Q_{\lambda}^{1} f(z)=B_{\lambda} f(z)=z+\sum_{n=2}^{\infty}\left(\frac{\lambda+1}{\lambda+n}\right) a_{n} z^{n} \tag{1.15}
\end{equation*}
$$

Definition 3 (Komatu [4]). Let $f(z) \in \mathcal{A}$ be defined by (1.1), then

$$
\begin{align*}
P_{\lambda}^{\mu} f(z)= & \frac{(\lambda+1)^{\mu}}{z^{\lambda} \Gamma(\mu)} \int_{0}^{z} t^{\lambda-1}\left(\log \frac{z}{t}\right)^{\mu-1} f(t) d t \\
= & z+\sum_{n=2}^{\infty}\left(\frac{\lambda+1}{\lambda+n}\right)^{\mu} a_{n} z^{n} . \tag{1.16}\\
& (\lambda>-1 ; \mu>0 ; f \in \mathcal{A})
\end{align*}
$$

The operators (1.14) and (1.16) contain the familiar Jung-Kim-Srivastava and Komatu operator (see the details in [3], [4]).

Lemma 1 (Raina \& Bansal [9, Theorem 2.1, p. 3687]). If $f(z) \in \mathcal{A}$ and satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty} L\left(\lambda_{n}, \mu_{n}, k, \alpha\right)\left|a_{n}\right| \leqq 2(\alpha-1) \tag{1.17}
\end{equation*}
$$

where

$$
\begin{equation*}
L\left(\lambda_{n}, \mu_{n}, k, \alpha\right)=\left\{\left(\lambda_{n}-k \mu_{n}\right)+\left|\lambda_{n}+(k-2 \alpha) \mu_{n}\right|\right\}, \tag{1.18}
\end{equation*}
$$

for some $k(0 \leqq k \leqq 1)$, and some $\alpha(\alpha>1)$, then $f(z) \in \mathcal{S}_{\alpha}(\phi, \psi)$.
Lemma 2. Let $L\left(\lambda_{n}, \mu_{n}, k, \alpha\right)$ be defined by (1.18), then $\left\{L\left(\lambda_{n}, \mu_{n}, k, \alpha\right)\right\}_{n=2}^{\infty}$ is a nonvanishing, positive and nondecreasing sequence provided that the sequences $\left\langle\mu_{n}\right\rangle$ and $\left\langle\frac{\lambda_{n}}{\mu_{n}}\right\rangle$ are nondecreasing, and

$$
\begin{equation*}
\left(\lambda_{n}>\mu_{n}>0 ; n \in \mathbb{N} \backslash\{1\} ; \alpha>1 ; 0 \leqq k \leqq 1\right) \tag{1.19}
\end{equation*}
$$

Proof. See details in [9, p. 3692].
Lemma 3 (Littlewood [5]). If $f(z)$ and $h(z)$ are analytic in \mathbb{U} with $f(z) \prec$ $h(z)$, then for $p>0$ and $z=r e^{i \theta}(0<r<1)$:

$$
\begin{equation*}
\int_{0}^{2 \pi}|f(z)|^{p} d \theta \leq \int_{0}^{2 \pi}|h(z)|^{p} d \theta \tag{1.20}
\end{equation*}
$$

Corresponding to the neighborhood definition given by Frasin and Darus [2], let $f \in \mathcal{A}$ be of the form (1.1) and $s \geqq 0$, then a $(q-s)$ neighborhood of the function f is defined by

$$
\begin{equation*}
M_{s}^{q}(f)=\left\{h \in \mathcal{A}: h(z)=z+\sum_{n=2}^{\infty} c_{n} z^{n}, \quad \sum_{n=2}^{\infty} n^{q+1}\left|a_{n}-c_{n}\right| \leqq s\right\} \tag{1.21}
\end{equation*}
$$

For

$$
e(z)=z
$$

we observe that

$$
\begin{equation*}
M_{s}^{q}(e)=\left\{h \in \mathcal{A}: h(z)=z+\sum_{n=2}^{\infty} c_{n} z^{n}, \quad \sum_{n=2}^{\infty} n^{q+1}\left|c_{n}\right| \leqq s\right\} \tag{1.22}
\end{equation*}
$$

where $q \in \mathbb{N} \cup\{0\}$. We note that $M_{s}^{0}(f)=N_{s}(f)$ and $M_{s}^{1}(f)=M_{s}(f)$, where $N_{s}(f)$ denotes the s-neighborhood of f introduced by Ruscheweyh [11], and $M_{s}(f)$ is the neighborhood defined by Silverman [12].

In view of Lemma 1, we further define the following subclasses of the class $\mathcal{S}_{\alpha}(\phi, \psi)$.

Definition 4. Let $G_{\alpha}(\phi, \psi)$ denote the class of functions $f \in \mathcal{S}_{\alpha}(\phi, \psi)$ (defined by (1.10)) whose coefficients satisfy the coefficient inequality (1.17).

Corresponding to the subclasses $\Lambda_{\alpha}(\lambda), \mathcal{M}(\alpha)$ and $\mathcal{N}(\alpha)$ defined by (1.11) to (1.13), we also have the following set of subclasses of the class $G_{\alpha}(\phi, \psi)$ (see [9, p. 3691]):

$$
\begin{gather*}
G_{\alpha}\left(\frac{z}{(1-z)^{\lambda+2}}, \frac{z}{(1-z)^{\lambda+1}}\right) \equiv \Lambda_{\alpha}^{*}(\lambda) \tag{1.23}\\
G_{\alpha}\left(\frac{z}{(1-z)^{2}}, \frac{z}{1-z}\right) \equiv \mathcal{M}^{*}(\alpha) \tag{1.24}
\end{gather*}
$$

and

$$
\begin{equation*}
G_{\alpha}\left(\frac{z+z^{2}}{(1-z)^{3}}, \frac{z}{(1-z)^{2}}\right) \equiv \mathcal{N}^{*}(\alpha) \tag{1.25}
\end{equation*}
$$

Obviously, we have the relatioships

$$
\Lambda_{\alpha}^{*}(\lambda) \subset \Lambda_{\alpha}(\lambda) ; \mathcal{M}^{*}(\alpha) \subset \mathcal{M}(\alpha) ; \quad \mathcal{N}^{*}(\alpha) \subset \mathcal{N}(\alpha)
$$

Among many others, the classes $\mathcal{M}(\alpha)$ and $\mathcal{N}(\alpha)$ were studied recently by Choi [1], Srivastava and Attiya [13] and Owa and Nishiwaki [6]. In this paper we investigate the integral means inequalities for the integral operators Q_{λ}^{μ} and P_{λ}^{μ} involving suitably normalized analytic functions. We also derive some neighborhood and inclusion relationships for the class $G_{\alpha}(\phi, \psi)$ (defined above). Several corollaries depicting some interesting consequences of the main results are also mentioned.

2. THE MAIN RESULTS

In this section we give integral means inequalities in Theorems 1 and 2, a neighborhood property for the class $G_{\alpha}(\phi, \psi)$ in Theorem 3, and some inclusion properties for class $G_{\alpha}(\phi, \psi)$ in Theorem 4, involving the integral operators Q_{λ}^{μ} and P_{λ}^{μ} (defined above by (1.14) and (1.16), respectively).

Theorem 1. Let $f(z) \in \mathcal{A}$ and $g(z)$ be defined by

$$
\begin{equation*}
g(z)=z+b_{j} z^{j} \quad\left(b_{j} \neq 0 ; j \geqq 2\right) \tag{2.1}
\end{equation*}
$$

and suppose that

$$
\begin{equation*}
\sum_{n=2}^{\infty} L\left(\lambda_{n}, \mu_{n}, k, \alpha\right)\left|a_{n}\right| \leqq \frac{\left|b_{j}\right| \Gamma(\delta+\eta+1) \Gamma(\delta+j) L\left(\lambda_{2}, \mu_{2}, k, \alpha\right)(\lambda+\mu+1)}{\Gamma(\delta+1) \Gamma(j+\delta+\eta)(\lambda+1)} \tag{2.2}
\end{equation*}
$$

where $L\left(\lambda_{n}, \mu_{n}, k, \alpha\right)$ is given by (1.18). If $\left\langle\lambda_{n}\right\rangle,\left\langle\mu_{n}\right\rangle$ and $\left\langle\lambda_{n} / \mu_{n}\right\rangle$ are nondecreasing sequences and $\lambda_{n}>\mu_{n}>0(n \in \mathbb{N} \backslash\{1\}), 0 \leqq k \leqq 1$, then for $\lambda>-1, \delta>-1, \mu>0, \eta>0, p>0$ and $z=r e^{i \theta}(0<r<1)$:

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|Q_{\lambda}^{\mu} f(z)\right|^{p} d \theta \leqq \int_{0}^{2 \pi}\left|Q_{\delta}^{\eta} g(z)\right|^{p} d \theta \tag{2.3}
\end{equation*}
$$

Proof. Let $f(z)$ be given by (1.1). In view of (1.14), we obtain

$$
Q_{\lambda}^{\mu} f(z)=z\left[1+\frac{\Gamma(\lambda+\mu+1)}{\Gamma(\lambda+1)} \sum_{n=2}^{\infty} \frac{\Gamma(n+\lambda)}{\Gamma(n+\lambda+\mu)} a_{n} z^{n-1}\right]
$$

and

$$
Q_{\delta}^{\eta} g(z)=z\left[1+\frac{\Gamma(\delta+\eta+1) \Gamma(j+\delta)}{\Gamma(\delta+1) \Gamma(j+\delta+\eta)} b_{j} z^{j-1}\right]
$$

To prove (2.3), it is sufficient to show by means of Lemma 3 that

$$
\begin{equation*}
1+\frac{\Gamma(\lambda+\mu+1)}{\Gamma(\lambda+1)} \sum_{n=2}^{\infty} \frac{\Gamma(n+\lambda)}{\Gamma(n+\lambda+\mu)} a_{n} z^{n-1} \prec 1+\frac{\Gamma(\delta+\eta+1) \Gamma(j+\delta)}{\Gamma(\delta+1) \Gamma(j+\delta+\eta)} b_{j} z^{j-1} \tag{2.4}
\end{equation*}
$$

By setting
$1+\frac{\Gamma(\lambda+\mu+1)}{\Gamma(\lambda+1)} \sum_{n=2}^{\infty} \frac{\Gamma(n+\lambda)}{\Gamma(n+\lambda+\mu)} a_{n} z^{n-1}=1+\frac{\Gamma(\delta+\eta+1) \Gamma(j+\delta)}{\Gamma(\delta+1) \Gamma(j+\delta+\eta)} b_{j}[w(z)]^{j-1}$
we find that

$$
\begin{equation*}
[w(z)]^{j-1}=\frac{\Gamma(\lambda+\mu+1) \Gamma(\delta+1) \Gamma(j+\delta+\eta)}{b_{j} \Gamma(\delta+\eta+1) \Gamma(\lambda+1) \Gamma(j+\delta)} \sum_{n=2}^{\infty} L\left(\lambda_{n}, \mu_{n}, k, \alpha\right) \theta(n) a_{n} z^{n-1} \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta(n)=\frac{\Gamma(n+\lambda)}{L\left(\lambda_{n}, \mu_{n}, k, \alpha\right) \Gamma(n+\lambda+\mu)} \tag{2.6}
\end{equation*}
$$

$$
\left(\lambda_{n}>\mu_{n}>0(\forall n \in \mathbb{N} \backslash\{1\}), 0 \leqq k \leqq 1, \alpha>1, \lambda>-1, \mu>0\right) .
$$

If $\left\langle\mu_{n}\right\rangle$ and $\left\langle\lambda_{n} / \mu_{n}\right\rangle$ are nondecreasing sequences, then by virtue of Lemma 2 we observe that $\frac{1}{L\left(\lambda_{n}, \mu_{n}, k, \alpha\right)}$ is a positive nonincreasing sequence. Also, $\frac{\Gamma(n+\lambda)}{\Gamma(n+\lambda+\mu)}$ is a nonincreasing positive sequence. Thus, $\theta(n)(n \in \mathbb{N} \backslash\{1\})$ is also a nonincreasing sequence of n (being the product of two positive nonincreasing sequences). It readily follows that

$$
0<\theta(n) \leqq \theta(2)=\frac{\Gamma(\lambda+2)}{L\left(\lambda_{2}, \mu_{2}, k, \alpha\right) \Gamma(\lambda+\mu+2)},
$$

and from (2.5), we infer that $w(0)=0$, and therefore, we are lead to

$$
\begin{aligned}
& |w(z)|^{j-1} \\
& \quad \leqq \frac{\Gamma(\lambda+\mu+1) \Gamma(\delta+1) \Gamma(j+\delta+\eta)}{\left|b_{j}\right| \Gamma(\delta+\eta+1) \Gamma(\lambda+1) \Gamma(j+\delta)} \sum_{n=2}^{\infty} L\left(\lambda_{n}, \mu_{n}, k, \alpha\right) \theta(n)\left|a_{n}\right||z|^{n-1} \\
& \\
& \leqq \frac{|z| \Gamma(\lambda+\mu+1) \Gamma(\delta+1) \Gamma(j+\delta+\eta)}{\left|b_{j}\right| \Gamma(\delta+\eta+1) \Gamma(\lambda+1) \Gamma(j+\delta)} \theta(2) \sum_{n=2}^{\infty} L\left(\lambda_{n}, \mu_{n}, k, \alpha\right)\left|a_{n}\right| \\
& \\
& \leqq|z|<1
\end{aligned}
$$

on making use of the hypothesis (2.2) of Theorem 1. Evidently, the last inequality above establishes the subordination (2.4), which consequently proves our Theorem 1.

Theorem 2. Let $f(z) \in \mathcal{A}$ and $g(z)$ be defined by (2.1), and suppose that

$$
\begin{equation*}
\sum_{n=2}^{\infty} L\left(\lambda_{n}, \mu_{n}, k, \alpha\right)\left|a_{n}\right| \leqq\left(\frac{\delta+1}{\delta+j}\right)^{\eta}\left(\frac{\lambda+2}{\lambda+1}\right)^{\mu} L\left(\lambda_{2}, \mu_{2}, k, \alpha\right)\left|b_{j}\right| \tag{2.7}
\end{equation*}
$$

where $L\left(\lambda_{n}, \mu_{n}, k, \alpha\right)$ is given by (1.18). If $\left\langle\lambda_{n}\right\rangle,\left\langle\mu_{n}\right\rangle$ and $\left\langle\lambda_{n} / \mu_{n}\right\rangle$ are nondecreasing sequences, $\lambda_{n}>\mu_{n}>0(\forall n \in \mathbb{N} \backslash\{1\}), 0 \leqq k \leqq 1$, then for $\lambda>-1, \delta>-1, \mu>0, \eta>0, p>0$ and $z=r e^{i \theta}(0<r<1)$:

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|P_{\lambda}^{\mu} f(z)\right|^{p} d \theta \leqq \int_{0}^{2 \pi}\left|P_{\delta}^{\eta} g(z)\right|^{p} d \theta \tag{2.8}
\end{equation*}
$$

Proof. Let $f(z)$ be given by (1.1). Using (1.16), we obtain

$$
P_{\lambda}^{\mu} f(z)=z\left[1+\sum_{n=2}^{\infty}\left(\frac{\lambda+1}{\lambda+n}\right)^{\mu} a_{n} z^{n-1}\right]
$$

and

$$
P_{\delta}^{\eta} g(z)=z\left[1+\left(\frac{\delta+1}{\delta+j}\right)^{\eta} b_{j} z^{j-1}\right]
$$

To establish (2.8), it is sufficient to show that (in view of Lemma 3)

$$
\begin{equation*}
1+\sum_{n=2}^{\infty}\left(\frac{\lambda+1}{\lambda+n}\right)^{\mu} a_{n} z^{n-1} \prec 1+\left(\frac{\delta+1}{\delta+j}\right)^{\eta} b_{j} z^{j-1} . \tag{2.9}
\end{equation*}
$$

Putting

$$
1+\sum_{n=2}^{\infty}\left(\frac{\lambda+1}{\lambda+n}\right)^{\mu} a_{n} z^{n-1}=1+\left(\frac{\delta+1}{\delta+j}\right)^{\eta} b_{j}[w(z)]^{j-1}
$$

we obtain

$$
\begin{equation*}
[w(z)]^{j-1}=\left(\frac{\delta+j}{\delta+1}\right)^{\eta} \frac{1}{b_{j}} \sum_{n=2}^{\infty} L\left(\lambda_{n}, \mu_{n}, k, \alpha\right) \sigma(n) a_{n} z^{n-1} \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma(n)=\left(\frac{\lambda+1}{\lambda+n}\right)^{\mu} \frac{1}{L\left(\lambda_{n}, \mu_{n}, k, \alpha\right)} \tag{2.11}
\end{equation*}
$$

$$
\left(\lambda_{n}>\mu_{n}>0(\forall n \in \mathbb{N} \backslash\{1\}), 0 \leqq k \leqq 1, \alpha>1, \lambda>-1, \mu>0\right)
$$

If $\left\langle\lambda_{n}\right\rangle,\left\langle\mu_{n}\right\rangle$ and $\left\langle\lambda_{n} / \mu_{n}\right\rangle$ are nondecreasing sequences then by the application of Lemma 2, we observe that $\frac{1}{L\left(\lambda_{n}, \mu_{n}, k, \alpha\right)}$ is a nonincreasing sequence. Also, $\left(\frac{\lambda+1}{\lambda+n}\right)^{\mu}$ is a nonincreasing sequence. Thus, $\sigma(n)$ is a nonincreasing sequence (being the product of two positive nonincreasing sequences).

Now $\sigma(n)$ being a nonincreasing sequence of n implies that

$$
0<\sigma(n) \leqq \sigma(2)=\left(\frac{\lambda+1}{\lambda+2}\right)^{\mu} \frac{1}{L\left(\lambda_{2}, \mu_{2}, k, \alpha\right)}
$$

and from (2.10), we note that $w(0)=0$, and hence, we obtain

$$
\begin{aligned}
|w(z)|^{j-1} & \leqq\left(\frac{\delta+j}{\delta+1}\right)^{\eta} \frac{1}{\left|b_{j}\right|} \sum_{n=2}^{\infty} L\left(\lambda_{n}, \mu_{n}, k, \alpha\right) \sigma(n)\left|a_{n}\right||z|^{n-1} \\
& \leqq \frac{|z|}{\left|b_{j}\right|}\left(\frac{\delta+j}{\delta+1}\right)^{\eta} \sigma(2) \sum_{n=2}^{\infty} L\left(\lambda_{n}, \mu_{n}, k, \alpha\right)\left|a_{n}\right| \\
& \leqq|z|<1
\end{aligned}
$$

by virtue of (2.7) of Theorem 2. The last inequality above establishes the subordination (2.9), which completes the proof of Theorem 2.

Theorem 3. If $\left\{\frac{L\left(\lambda_{n}, \mu_{n}, k, \alpha\right)}{n^{q+1}}\right\}_{n=2}^{\infty}$ is a nondecreasing sequence, then $G_{\alpha}(\phi, \psi) \subset$ $M_{s}^{q}(e)$, where

$$
\begin{equation*}
s=\frac{2^{q+2}(\alpha-1)}{L\left(\lambda_{2}, \mu_{2}, k, \alpha\right)} \tag{2.12}
\end{equation*}
$$

and $L\left(\lambda_{n}, \mu_{n}, k, \alpha\right)$ is given by (1.18).
Proof. It follows from (1.17) that if $f(z) \in G_{\alpha}(\phi, \psi)$, then

$$
\frac{L\left(\lambda_{2}, \mu_{2}, k, \alpha\right)}{2^{q+1}} \sum_{n=2}^{\infty} n^{q+1}\left|a_{n}\right| \leq \sum_{n=2}^{\infty} L\left(\lambda_{n}, \mu_{n}, k, \alpha\right)\left|a_{n}\right| \leqq 2(\alpha-1)
$$

which at once gives

$$
\sum_{n=2}^{\infty} n^{q+1}\left|a_{n}\right| \leq \frac{2^{q+2}(\alpha-1)}{L\left(\lambda_{2}, \mu_{2}, k, \alpha\right)}
$$

and the result follows on using (1.22).
Theorem 4. Let $f(z) \in G_{\alpha}(\phi, \psi)$, then $Q_{\lambda}^{\mu} f(z) \in G_{\alpha}(\phi, \psi)$ and $P_{\lambda}^{\mu} f(z) \in$ $G_{\alpha}(\phi, \psi)(\lambda>-1, \mu>0)$.

Proof. Let $f(z) \in G_{\alpha}(\phi, \psi)$, then $f(z)$ satisfies the coefficient inequality (1.17), and

$$
Q_{\lambda}^{\mu} f(z)=z+\frac{\Gamma(\lambda+\mu+1)}{\Gamma(\lambda+1)} \sum_{n=2}^{\infty} \frac{\Gamma(\lambda+n)}{\Gamma(\lambda+\mu+n)} a_{n} z^{n}
$$

To show that $Q_{\lambda}^{\mu} f(z) \in G_{\alpha}(\phi, \psi)$, we need simply to show that

$$
\sum_{n=2}^{\infty} L\left(\lambda_{n}, \mu_{n}, k, \alpha\right) \frac{\Gamma(\lambda+\mu+1) \Gamma(\lambda+n)}{\Gamma(\lambda+1) \Gamma(\lambda+\mu+n)}\left|a_{n}\right| \leq 2(\alpha-1)
$$

which is true in view of coefficient inequality (1.17), because evidentally

$$
\frac{\Gamma(\lambda+n)}{\Gamma(\lambda+\mu+n)} \leq \frac{\Gamma(\lambda+1)}{\Gamma(\lambda+\mu+1)}(\forall n=2,3, \ldots)
$$

The proof of second part, viz. that $f(z) \in G_{\alpha}(\phi, \psi)$ implies that $P_{\lambda}^{\mu} f(z) \in$ $G_{\alpha}(\phi, \psi)$ is similar to the first part, and is hence omitted.

3. APPLICATIONS OF MAIN RESULTS

In this section we consider some applications of our main results (Theorems 1 to 3).

Let us set

$$
\begin{equation*}
\eta=\mu, \delta=\lambda, b_{j}=\frac{2(\beta-1)}{L\left(\lambda_{j}, \mu_{j}, k, \alpha\right)}(j \geq 2) \tag{3.1}
\end{equation*}
$$

in Theorem 1, and suppose that $f(z) \in G_{\alpha}(\phi, \psi)$ (which is given by Definition $4)$, then the inequality (2.3) holds if the following coefficient inequality holds true:

$$
\begin{equation*}
\sum_{n=2}^{\infty} L\left(\lambda_{n}, \mu_{n}, k, \alpha\right)\left|a_{n}\right| \leq \frac{2(\beta-1) \Gamma(\lambda+\mu+2) \Gamma(\lambda+j) L\left(\lambda_{2}, \mu_{2}, k, \alpha\right)}{L\left(\lambda_{j}, \mu_{j}, k, \alpha\right) \Gamma(\lambda+2) \Gamma(\lambda+\mu+j)} \tag{3.2}
\end{equation*}
$$

To show that (3.2) is true, let us choose β such that

$$
\beta \geq 1+\frac{L\left(\lambda_{j}, \mu_{j}, k, \alpha\right) \Gamma(\lambda+2) \Gamma(\lambda+\mu+j)}{L\left(\lambda_{2}, \mu_{2}, k, \alpha\right) \Gamma(\lambda+j) \Gamma(\lambda+\mu+2)}(\alpha-1)
$$

then (3.2) reduces to

$$
\sum_{n=2}^{\infty} L\left(\lambda_{n}, \mu_{n}, k, \alpha\right)\left|a_{n}\right| \leq 2(\alpha-1)
$$

which is true in view of (1.17) of Lemma 1.
In view of the above parametric substitutions (3.1), Theorem 1 finally reduces to the following result.

Corollary 1. Let $f(z) \in G_{\alpha}(\phi, \psi)$ and $g(z)$ be given by

$$
\begin{equation*}
g(z)=z+\frac{2(\beta-1)}{L\left(\lambda_{n}, \mu_{n}, k, \alpha\right)} z^{n} \quad(n \geq 2) \tag{3.3}
\end{equation*}
$$

satisfying the conditions given by (1.19), then for $z=r e^{i \theta}(0<r<1)$:

$$
\begin{gather*}
\int_{0}^{2 \pi}\left|Q_{\lambda}^{\mu} f(z)\right|^{p} d \theta \leqq \int_{0}^{2 \pi}\left|Q_{\lambda}^{\mu} g(z)\right|^{p} d \theta \tag{3.4}\\
(\lambda>-1, \mu>0, p>0)
\end{gather*}
$$

provided that there exists β such that

$$
\begin{equation*}
\beta \geqq 1+\frac{L\left(\lambda_{n}, \mu_{n}, k, \alpha\right) \Gamma(\lambda+2) \Gamma(\lambda+\mu+n)}{L\left(\lambda_{2}, \mu_{2}, k, \alpha\right) \Gamma(\lambda+n) \Gamma(\lambda+\mu+2)}(\alpha-1)(n \geq 2) \tag{3.5}
\end{equation*}
$$

where $L\left(\lambda_{n}, \mu_{n}, k, \alpha\right)$ is given by (1.18).
Next, let us choose $n=2$ in Corollary 1, then from (3.5) we get $\beta \geqq \alpha$. Consequently, Corollary 1 gives

Corollary 2. Let $f(z) \in G_{\alpha}(\phi, \psi)$ and $g(z)$ be given by

$$
\begin{equation*}
g(z)=z+\frac{2(\beta-1)}{L\left(\lambda_{2}, \mu_{2}, k, \alpha\right)} z^{2}(\beta \geqq \alpha) \tag{3.6}
\end{equation*}
$$

satisfying the coditions corresponding to those given by (1.19), then for $z=r e^{i \theta}$ $(0<r<1)$:

$$
\begin{gather*}
\int_{0}^{2 \pi}\left|Q_{\lambda}^{\mu} f(z)\right|^{p} d \theta \leqq \int_{0}^{2 \pi}\left|Q_{\lambda}^{\mu} g(z)\right|^{p} d \theta \tag{3.7}\\
(\lambda>-1, \mu>0, p>0)
\end{gather*}
$$

where $L\left(\lambda_{2}, \mu_{2}, k, \alpha\right)$ is given by (1.18).
Making similar substitutions as given by (3.1) in Theorem 2, we shall arrive at the following result:

Corollary 3. Let $f(z) \in G_{\alpha}(\phi, \psi)$ and $g(z)$ be given by

$$
\begin{equation*}
g(z)=z+\frac{2(\beta-1)}{L\left(\lambda_{n}, \mu_{n}, k, \alpha\right)} z^{n} \quad(n \geq 2) \tag{3.8}
\end{equation*}
$$

satisfying the conditions given by (1.19), then for $z=r e^{i \theta} \quad(0<r<1)$:

$$
\begin{gather*}
\int_{0}^{2 \pi}\left|P_{\lambda}^{\mu} f(z)\right|^{p} d \theta \leqq \int_{0}^{2 \pi}\left|P_{\lambda}^{\mu} g(z)\right|^{p} d \theta \tag{3.9}\\
(\lambda>-1, \mu>0, p>0)
\end{gather*}
$$

provided that there exists β such that

$$
\begin{equation*}
\beta \geqq 1+\left(\frac{\lambda+n}{\lambda+2}\right)^{\mu} \frac{L\left(\lambda_{n}, \mu_{n}, k, \alpha\right)}{L\left(\lambda_{2}, \mu_{2}, k, \alpha\right)}(\alpha-1)(n \geq 2) \tag{3.10}
\end{equation*}
$$

where $L\left(\lambda_{n}, \mu_{n}, k, \alpha\right)$ is given by (1.18).
For $n=2$, Corollary 3 reduces to
Corollary 4. Let $f(z) \in G_{\alpha}(\phi, \psi)$ and $g(z)$ be given by

$$
\begin{equation*}
g(z)=z+\frac{2(\beta-1)}{L\left(\lambda_{2}, \mu_{2}, k, \alpha\right)} z^{2}(\beta \geqq \alpha) \tag{3.11}
\end{equation*}
$$

satisfying the conditions corresponding to those given by (1.19), then for $z=$ $r e^{i \theta} \quad(0<r<1):$

$$
\begin{gather*}
\int_{0}^{2 \pi}\left|P_{\lambda}^{\mu} f(z)\right|^{p} d \theta
\end{gathered} \begin{gathered}
0 \tag{3.12}\\
(\lambda>-1, \mu>0, p>0)
\end{gather*}
$$

where $L\left(\lambda_{2}, \mu_{2}, k, \alpha\right)$ is given by (1.18).
If we set the arbitrary functions ϕ and ψ in Corollary 2 in accordance with (1.24) and choose $\mu=1$, then in view of (1.15) we obtain the following result involving generalized Libera operator [7].

Corollary 5. Let $f(z) \in \mathcal{M}^{*}(\alpha)$ and $g(z)$ be given by

$$
\begin{equation*}
g(z)=z+\frac{2(\beta-1)}{\rho(k, \alpha)} z^{2} \quad(\beta \geqq \alpha) \tag{3.13}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho(k, \alpha)=\{(2-k)+|2+k-2 \alpha|\} . \tag{3.14}
\end{equation*}
$$

satisfying the conditions that $0 \leq k \leq 1, \alpha>1$, then for $z=r e^{i \theta}(0<r<1)$:

$$
\begin{gathered}
\int_{0}^{2 \pi}\left|B_{\lambda} f(z)\right|^{p} d \theta \leqq \int_{0}^{2 \pi}\left|B_{\lambda} g(z)\right|^{p} d \theta \\
(\lambda>-1, p>0)
\end{gathered}
$$

where the operator B_{λ} is defined by (1.15).
Making use of the relation (1.24) to reduce the class $G_{\alpha}(\phi, \psi)$ to $\mathcal{M}^{*}(\alpha)$ in Theorem 3, we obtain

Corollary 6. If $\left\{\frac{\Omega(n, k, \alpha)}{n^{q+1}}\right\}_{n=2}^{\infty}$ is a nondecreasing sequence, then $\mathcal{M}^{*}(\alpha) \subset$ $M_{s}^{q}(e)$, where

$$
\begin{equation*}
s=\frac{2^{q+2}(\alpha-1)}{\Omega(2, k, \alpha)} \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\Omega(n, k, \alpha)=\{(n-k)+|n+k-2 \alpha|\} . \tag{3.17}
\end{equation*}
$$

provided that $0 \leq k \leq 1, \alpha>1$ and $q \in \mathbb{N} \cup\{0\}$.
Similarly, if we use the relation (1.25) to reduce the class $G_{\alpha}(\phi, \psi)$ to $\mathcal{N}^{*}(\alpha)$ in Theorem 3, we get the following result.

Corollary 7. If $\left\{\frac{\Delta(n, k, \alpha)}{n^{q+1}}\right\}_{n=2}^{\infty}$ is a nondecreasing sequence, then $\mathcal{N}^{*}(\alpha) \subset$ $M_{s}^{q}(e)$, where

$$
\begin{equation*}
s=\frac{2^{q+2}(\alpha-1)}{\Delta(2, k, \alpha)} \tag{3.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta(n, k, \alpha)=n\{(n-k)+|n+k-2 \alpha|\} \tag{3.19}
\end{equation*}
$$

provided that $0 \leq k \leq 1, \alpha>1$ and $q \in \mathbb{N} \cup\{0\}$.

References

[1] J. H. Choi, Univalent functions with positive coefficients involving a certain fractional integral operator and its partial sums, Fract. Cal. Appl. Anal. 1 (1998), no. 3, 311-318.
[2] B. A. Frasin and M. Darus, Integral means inequalities and neighborhoods for analytic univalent functions with negative coefficients, Soochow J. Math. 30 (2004), no. 2, 217223.
[3] I. B. Jung, Y. C. Kim and H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl. 176 (1993), 138-147.
[4] Y. Komatu, On analytic prolongation of a family of integral operators, Mathematica (cluj) 32 (55), 141-145.
[5] J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc. 23 (1925), 481-519.
[6] S. Owa and J. Nishiwaki, Coefficients estimates for certain classes of analytic functions, J. Inequal. Pure Appl. Math. 3 (2002), no. 5, 1-5 (electronic).
[7] S. Owa and H. M. Srivastava, Some applications of the generalized Libera integral operator, Proc. Japan. Acad. Ser. A Math. Sci. 62 (1986), 125-128.
[8] S. Owa and H. M. Srivastava, Some generalized convolution properties associated with certain subclasses of analytic functions, J. Inequal. Pure Appl. Math. 3 (2002), no. 3, 1-13 (electronic).
[9] R. K. Raina and Deepak Bansal, Coefficient estimates and subordination properties associated with certain classes of functions, Internat. J. Math. Math. Sci. 22 (2005), 3685-3695.
[10] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.
[11] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (1981), no. 4, 521-527.
[12] H. Silverman, Neighborhoods of class of analytic functions, Far East J. Math. Sci., 3 (1995), no. 2, 165-169.
[13] H. M. Srivastava and A. Attiya, Some subordination results associated with certain subclasses of analytic functions, J. Inequal. Pure Appl. Math., 5 (2004), no. 4, 1-6 (electronic).
[14] H. M. Srivastava, and S. Owa, Current Topics in Analytic Functions Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hongkong, 1992.
[15] B. A. Uralegaddi, M. D. Gangi and S. M. Sarangi, Univalent function with positive coefficients, Tamkang J. Math. 25 (1994), 225-230.
R. K. Raina

10/11, Ganpati Vihar, Opposite Sector 5, Udaipur 313002, Rajasthan, India
E-mail address: rainark_7@hotmail.com
Deepak Bansal
Department of Mathematics, College of Engineering and Technology, BIKANER334004, RAJASTHAN, INDIA

E-mail address: deepakbansal_79@yahoo.com

