DOI QR코드

DOI QR Code

Bohr's Phenomenon for Some Univalent Harmonic Functions

  • Singla, Chinu (Department of Mathematics, Sant Longowal Institute of Engineering and Technology) ;
  • Gupta, Sushma (Department of Mathematics, Sant Longowal Institute of Engineering and Technology) ;
  • Singh, Sukhjit (Department of Mathematics, Sant Longowal Institute of Engineering and Technology)
  • Received : 2021.05.21
  • Accepted : 2021.10.07
  • Published : 2022.06.30

Abstract

In 1914, Bohr proved that there is an r0 ∈ (0, 1) such that if a power series ∑m=0 cmzm is convergent in the open unit disc and |∑m=0 cmzm| < 1 then, ∑m=0 |cmzm| < 1 for |z| < r0. The largest value of such r0 is called the Bohr radius. In this article, we find Bohr radius for some univalent harmonic mappings having different dilatations. We also compute the Bohr radius for functions that are convex in one direction.

Keywords

Acknowledgement

This work was supported by UGC - CSIR, New Delhi in the form of Senior Research Fellowship vide Award Letter Number - 2061540842.

References

  1. B. Bhowmik and N. Das, Bohr phenomenon for subordinating families of certain univalent functions, J. Math. Anal. Appl., 462(2)(2018), 1087-1098. https://doi.org/10.1016/j.jmaa.2018.01.035
  2. B. Bhowmik and N. Das, Bohr phenomenon for locally univalent functions and logarithmic power series, Comput. Methods Funct. Theory, 19(4)(2019), 729-745. https://doi.org/10.1007/s40315-019-00291-y
  3. H. Bohr, A theorem concerning power series, Proc. London Math. Soc., 2(1)(1914), 1-5. https://doi.org/10.1112/plms/s2-13.1.1
  4. J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I Math, 9(1984), 3-25. https://doi.org/10.5186/aasfm.1984.0905
  5. I. R. Kayumov, S. Ponnusamy and N. Shakirov. Bohr radius for locally univalent harmonic mappings, Math. Nachr., 291(11-12)(2018), 1757-1768. https://doi.org/10.1002/mana.201700068
  6. M. S. Liu, S. Ponnusamy and J. Wang, Bohr's phenomenon for the classes of Quasi-subordination and K-quasiregular harmonic mappings, Revista de la Real Academia de Ciencias Exactas, F'isicas y Naturales. Serie A. Matem'aticas, 114(3)(2020), 1-15.
  7. Z. H. Liu and S. Ponnusamy, Bohr radius for subordination and K-quasiconformal harmonic mappings, Bull. Malays. Math. Sci. Soc., 42(5)(2019), 2151-2168. https://doi.org/10.1007/s40840-019-00795-9
  8. Y. A. Muhanna, Bohr's phenomenon in subordination and bounded harmonic classes, Complex Var. Elliptic Equ., 55(11)(2010), 1071-1078. https://doi.org/10.1080/17476931003628190
  9. Y. A. Muhanna, R. M. Ali and Saminathan Ponnusamy, On the Bohr inequality, Progress in Approximation Theory and Applicable Complex Analysis, Springer, (2017), 269-300.
  10. L. E. Schaubroeck, Subordination of planar harmonic functions, Complex Var. Elliptic Equ., 41(2)(2000), 163-178.
  11. T. Sheil-Small, Constants for planar harmonic mappings, J. Lond. Math. Soc., 2(2)(1990), 237-248. https://doi.org/10.1112/jlms/s2-2.2.237