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COINCIDENCE THEOREMS FOR NONCOMPACT RC-MAPS

IN ABSTRACT CONVEX SPACES WITH APPLICATIONS

Ming-ge Yang and Nan-jing Huang

Abstract. In this paper, a coincidence theorem for a compact RC-map
is proved in an abstract convex space. Several more general coincidence
theorems for noncompact RC-maps are derived in abstract convex spaces.
Some examples are given to illustrate our coincidence theorems. As ap-
plications, an alternative theorem concerning the existence of maximal
elements, an alternative theorem concerning equilibrium problems and
a minimax inequality for three functions are proved in abstract convex
spaces.

1. Introduction

Many problems in nonlinear analysis can be solved by showing the intersec-
tion of certain family of subsets of an underlying set is nonempty. The first
remarkable result on the nonempty intersection was the celebrated Knaster-
Kuratowski-Mazurkiewicz theorem (simply, the KKM principle) in 1929 [11],
which concerns with certain types of maps called KKM maps later.

At the beginning, the KKM theory was mainly devoted to the study of
convex subsets of topological vector spaces. Later it has been extended to
convex spaces by Lassonde [12], to C-spaces (or H-spaces) by Horvath [8, 9],
and to generalized convex (G-convex) spaces by Park and Kim [24] and Park
[21, 22, 23]. Recently, Park [16] introduced a new concept of abstract convex
spaces which include convex subsets of topological vector spaces, convex spaces,
C-spaces andG-convex spaces as special cases. Park [16] also introduced certain
broad classes RO and RC of maps (having the KKM property), which includes
the well-known classKKM(X,Y ) introduced by Chang and Yen [5] as a special
case. With these new concepts, some coincidence theorems and fixed point
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theorems were proved in abstract convex spaces by Park [16]. Very recently,
Park [17, 18, 19, 20] further studied KKM theory in abstract convex spaces
with applications to fixed points, maximal elements, equilibria problems and
other problems. It is noted that, in the KKM theory, there have appeared a
number of coincidence theorems with many significant applications.

On the other hand, since Fan [7] and Liu [15] extended the von Neumann-
Sion principle obtaining two-function minimax inequalities, many such results
involving two or more functions have been obtained in the literature (see, for
example, [1, 3, 18] and the references therein).

Motivated and inspired by the works mentioned above, in this paper, we first
obtain a coincidence theorem for a compact RC-map in abstract convex space.
Then we derive several more general coincidence theorems for noncompact RC-
maps in abstract convex spaces. We also give some examples to illustrate our
coincidence theorems. As applications, we prove an alternative theorem con-
cerning the existence of maximal elements, an alternative theorem concerning
equilibrium problems, and a three-function minimax inequality of the following
type:

inf
x∈X

h(x, x) ≤ sup
x∈X

inf
z∈Z

f(x, z) + sup
z∈Z

inf
x∈X

g(x, z)

in abstract convex spaces. The results presented in this paper improve and
generalize some corresponding results due to Balaj [1], Balaj and Lin [3] and
Lin, Ansari and Wu [14].

2. Preliminaries

A multimap (or simply a map) T : X ⊸ Y is a function from a set X into
the power set 2Y of Y , that is a function with the values T (x) ⊂ Y for x ∈ X .
Given a map T : X ⊸ Y , the map T− : Y ⊸ X defined by T−(y) = {x ∈
X : y ∈ T (x)} for y ∈ Y , is called the (lower) inverse of T . For any A ⊂ X ,
T (A) :=

⋃

x∈A T (x). For any B ⊂ Y , T−(B) := {x ∈ X : T (x) ∩B 6= ∅}. For
a set X , 〈X〉 will denote the family of all nonempty finite subsets of X .

If A is a subset of a topological space, we denote by intA and A the interior
and closure of A, respectively.

For topological spaces X and Y , a map T : X ⊸ Y is said to be compact if
T (X) is contained in a compact subset of Y . Let T : X ⊸ Y be a map defined

by T (x) = T (x) for x ∈ X .

Definition 2.1 ([25]). Suppose thatX is a nonempty set and Y is a topological
space. A map T : X ⊸ Y is said to be transfer open valued if for any
(x, y) ∈ X × Y with y ∈ T (x) there exists an x

′

∈ X such that y ∈ int T (x
′

).

Note that a map with open values is transfer open valued, but generally the
converse is not true.

Lemma 2.1 ([13]). Let X be a topological space, Z be a nonempty set, and

P : X ⊸ Z be a map. Then the following assertions are equivalent:
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(i) P− is transfer open valued and P has nonempty values;
(ii) X =

⋃

z∈Z int P−(z).

Definition 2.2 ([16]). An abstract convex space (E,D; Γ) consists of a non-
empty set E, a nonempty set D, and a map Γ : 〈D〉 ⊸ E with nonempty
values. We denote ΓA := Γ(A) for A ∈ 〈D〉.

An abstract convex space (E,D; Γ) with any topology on E is called an
abstract convex topological space.

In case E = D, let (E; Γ) := (E,E; Γ). It is obvious that any vector space E
is an abstract convex space with Γ = co, where co is the convex hull in vector
spaces. In specially, (R; co) is an abstract convex space. For more examples of
abstract convex spaces, we refer to [16, 17, 18, 19, 20].

Let (E,D; Γ) be an abstract convex space. For any D′ ⊂ D, the Γ-convex
hull of D′ is denoted and defined by

coΓD
′ :=

⋃

{ΓA |A ∈ 〈D′〉} ⊂ E

(co is reserved for the convex hull in vector spaces). A subset X of E is called
a Γ-convex subset of (E,D; Γ) relative to D′ if for any N ∈ 〈D′〉, we have
ΓN ⊂ X ; that is, coΓD

′ ⊂ X . This means that (X,D′; Γ|〈D′〉) itself is an
abstract convex space called a subspace of (E,D; Γ). When D ⊂ E, the space
is denoted by (E ⊃ D; Γ). In such case, a subset X of E is said to be Γ-convex
if coΓ(X ∩ D) ⊂ X ; in other words, X is Γ-convex relative to D′ = X ∩ D.
When (E; Γ) = (R; co), Γ-convex subsets reduce to ordinary convex subsets.

Let (E,D; Γ) be an abstract convex space and Z a set. For a map F : E ⊸ Z
with nonempty values, if a map G : D ⊸ Z satisfies

F (ΓA) ⊂ G(A), ∀A ∈ 〈D〉,

then G is called a KKM map with respect to F . A KKM map G : D ⊸ E is a
KKM map with respect to the identity map 1E . A map F : E ⊸ Z is said to
have the KKM property and called a R-map if, for any KKM map G : D ⊸ Z
with respect to F , the family {G(y)}y∈D has the finite intersection property.
We denote

R(E,Z) := {F : E ⊸ Z |F is a R-map}.

Similarly, when Z is a topological space, a RC-map is defined for closed-
valued maps G, and a RO-map is defined for open-valued maps G. Note that
if Z is discrete, then three classes R, RC and RO are identical. Some authors
use the notation KKM(E,Z) instead of RC(E,Z).

For every abstract convex space (E,D; Γ) and every nonempty set Z, there
exists a map F ∈ R(E,Z). In fact, for each x ∈ E, choose F (x) := Z or
F (x) := {z0} for some z0 ∈ Z. If the identity map 1E ∈ R(E,E), then
f ∈ R(E,Z) for any function f : E → Z. If E and Z are topological spaces,
this holds for RC or RO for any continuous f .
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It is known that for a G-convex space (E,D; Γ), we have the identity map
1E ∈ RC(E,E) ∩ RO(E,E). Moreover, if F : E → Z is a continuous single-
valued map or if F : E ⊸ Z has a continuous selection, then it is easy to check
that F ∈ RC(E,Z) ∩ RO(E,Z). For more details about classes R, RC and
RO, we refer to [16, 17, 18, 19, 20].

From now all topological spaces will be assumed to be Hausdorff.

Lemma 2.2. Let X be a topological space and (Y ; Γ) be an abstract convex

space. If T ∈ RC(Y,X) is compact and S : Y ⊸ X is a KKM map with respect

to T , then T (Y ) ∩
⋂

y∈Y S(y) 6= ∅.

Proof. Since S is a KKM map with respect to T , we have T (ΓN) ⊂ S(N) for

each N ∈ 〈Y 〉. It is obvious that T (ΓN) ⊂ T (Y ) and S(N) ⊂ S(N). Hence,

T (ΓN) ⊂ T (Y ) ∩ S(N). It follows that the map F : Y ⊸ X defined by

F (y) = T (Y ) ∩ S(y), ∀y ∈ Y

is a KKM map with respect to T . Note that F has closed values. By the
definition of T ∈ RC(Y,X), we have the family {F (y)}y∈Y has the finite inter-

section property. Moreover, T (Y ) is compact. We have the family {F (y)}y∈Y

has the nonempty intersection property, that is, T (Y ) ∩
⋂

y∈Y S(y) 6= ∅. This
completes the proof. �

Remark 2.1. (a) If Y is a convex subset of a topological vector space and
Γ = co, then Lemma 2.2 reduces to Lemma 3 in [1]; (b) By using Lemma 2.2
when Y is a convex space and Γ = co, we can easily derive Lemma 2.2 in [14].

3. Coincidence theorems

Theorem 3.1. Let X be a topological space and (Y ; Γ) be an abstract convex

space. Let S : X ⊸ Y , Q : X ⊸ Y and T : Y ⊸ X be three maps satisfying

the following conditions:

(i) X =
⋃

y∈Y int S−(y);

(ii) for each x ∈ X, M ∈ 〈S(x)〉 implies ΓM ⊂ Q(x);
(iii) T ∈ RC(Y,X) is compact.

Then there exists (x0, y0) ∈ X × Y such that x0 ∈ T (y0) and y0 ∈ Q(x0).

Proof. Suppose the conclusion would be false. Then for each y ∈ Y and x ∈
T (y), we have y /∈ Q(x). Define a map S∗ : Y ⊸ X by

S∗(y) = X \ S−(y), ∀y ∈ Y.

We show that S∗ is a KKM map with respect to T . Suppose to the contrary
that there exist a finite subset N of Y and a point x ∈ T (ΓN ) \ S∗(N). By
x ∈ T (ΓN ), there exists y ∈ ΓN such that x ∈ T (y), and it follows that
y /∈ Q(x). By x /∈ S∗(N), we have x /∈ S∗(y) for each y ∈ N . It follows that
y ∈ S(x) for each y ∈ N and so N ∈ 〈S(x)〉. By condition (ii), ΓN ⊂ Q(x).
Hence, y ∈ ΓN ⊂ Q(x), which is a contradiction.



COINCIDENCE THEOREMS FOR NONCOMPACT RC-MAPS 1151

By Lemma 2.2, there exists x0 ∈
⋂

y∈Y S∗(y). By condition (i), there exists

y0 ∈ Y such that x0 ∈ int S−(y0). Hence, there exists a neighborhood V of x0

such that V ⊂ S−(y0). It follows that y0 ∈ S(x) for each x ∈ V . On the other

hand, since x0 ∈ S∗(y0), we know that V ∩ S∗(y0) 6= ∅. Hence, there exists
x ∈ V such that x ∈ S∗(y0), and it follows y0 /∈ S(x), which is a contradiction.
This completes the proof. �

Remark 3.1. (a) If Y is a convex space with Γ = co and S = Q, then Theorem
3.1 reduces to Theorem 2.5 in Lin, Ansari and Wu [14]; (b) We would like to
point out that the proof of Theorem 3.1 is quite different from the proof of
Theorem 2.5 in [14].

Example 3.1 Let X = [1,+∞) be endowed with Euclidean topology and
Y = [0,+∞) with Γ = co. Let S : X ⊸ Y , Q : X ⊸ Y and T : Y ⊸ X be
three maps defined, respectively, by

S(x) = {0}, ∀x ∈ X,

Q(x) = [0, x), ∀x ∈ X

and
T (y) = {1}, ∀y ∈ Y.

Then we can check that all the conditions of Theorem 3.1 are satisfied.
(i) Since

S−(y) =

{

X, if y = 0,
∅, if y > 0,

we have
X = S−(0) =

⋃

y∈Y

int S−(y)

and so condition (i) of Theorem 3.1 is satisfied.
(ii) For each x ∈ X and M ∈ 〈S(x)〉, we have M = {0} and so

ΓM = coM = {0} ⊂ [0, x) = Q(x).

It follows that condition (ii) of Theorem 3.1 is satisfied.
(iii) For any KKM map F : Y ⊸ X with respect to T , we have T (ΓA) ⊂

F (A) for each A ∈ 〈Y 〉, i.e., 1 ∈ F (A) for each A ∈ 〈Y 〉. Hence 1 ∈
⋂

y∈Y F (y),

and it follows that T ∈ R(Y,X) ⊂ RC(Y,X). Since T (Y ) = {1} and {1}
is compact, we know that T is compact. This shows that condition (iii) of
Theorem 3.1 is satisfied.

Thus, it follows from (i)-(iii) that all the conditions of Theorem 3.1 are
satisfied.

When T is not necessarily compact, we have the following result.

Theorem 3.2. Let X be a topological space and (Y ; Γ) be an abstract convex

space. Let S : X ⊸ Y , Q : X ⊸ Y and T : Y ⊸ X be three maps satisfying

the following conditions:

(i) X =
⋃

y∈Y int S−(y);
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(ii) for each x ∈ X, M ∈ 〈S(x)〉 implies ΓM ⊂ Q(x);
(iii) T ∈ RC(Y,X);

(iv) for each compact subset A of Y , T (A) is compact;
(v) there exists a nonempty compact subset D of X such that for each

N ∈ 〈Y 〉, there exists a compact Γ-convex subset LN of Y containing

N such that T (LN) \D ⊂ ∪{int S−(y) : y ∈ LN}.

Then there exists (x0, y0) ∈ X × Y such that x0 ∈ T (y0) and y0 ∈ Q(x0).

Proof. Since D is compact and

D ⊂ X =
⋃

y∈Y

int S−(y),

there exists a finite subset N ∈ 〈Y 〉 such that

(3.1) D ⊂ ∪{int S−(y) : y ∈ N}.

By condition (v), there exists a compact Γ-convex subset LN of Y containing
N such that

(3.2) T (LN) \D ⊂ ∪{int S−(y) : y ∈ LN}.

By (3.1), we get

(3.3) T (LN) ∩D ⊂ ∪{int S−(y) : y ∈ N} ⊂ ∪{int S−(y) : y ∈ LN}.

From (3.2) and (3.3), we have

T (LN) ⊂ ∪{int S−(y) : y ∈ LN}.

Since (Y ; Γ) is an abstract convex space and LN is a Γ-convex subset of Y ,

(LN ; Γ|〈LN〉) is also an abstract convex space. By condition (iv), T (LN) is com-
pact, and hence T |LN

is compact. Since T ∈ RC(Y,X) and LN is a Γ-convex
subset of Y , it follows from Lemma 2 in [18] that T |LN

∈ RC(LN , T (LN)).
By Theorem 3.1, there exist x0 ∈ T (LN) ⊂ X and y0 ∈ LN ⊂ Y such that
x0 ∈ T |LN

(y0) = T (y0) and y0 ∈ Q|T (LN )(x0) = Q(x0). This completes the
proof. �

Remark 3.2. (a) If Y is a convex space with Γ = co and S = Q, then Theorem
3.2 reduces to Theorem 2.6 in Lin, Ansari and Wu [14]; (b) If T is compact or
X is compact, then conditions (iv) and (v) become superfluous.

Example 3.2 Let X = [1,+∞) be endowed with Euclidean topology and
Y = [0,+∞) with Γ = co. Let S : X ⊸ Y , Q : X ⊸ Y and T : Y ⊸ X be
three maps defined, respectively, by

S(x) = {0}, ∀x ∈ X,

Q(x) = [0, x), ∀x ∈ X

and
T (y) = {y + 1}, ∀y ∈ Y.

Then we can check that all the conditions of Theorem 3.2 are satisfied.
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(i) By Example 3.1(i), we have X =
⋃

y∈Y int S−(y) and so condition (i) of
Theorem 3.2 is satisfied.

(ii) By Example 3.1(ii), for each x ∈ X and M ∈ 〈S(x)〉, we have ΓM ⊂
Q(x). So condition (ii) of Theorem 3.2 is satisfied.

(iii) It is known that for abstract convex space (Y ; co) where Y ⊂ R, the
identity map 1Y ∈ RC(Y, Y ) ∩ RO(Y, Y ). Since T : Y ⊸ X is a continuous
single-valued map, we have T ∈ RC(Y,X) ∩ RO(Y,X) by Lemma 4 in Park
[18]. This shows that condition (iii) of Theorem 3.2 is satisfied.

(iv) Since T is a continuous single-valued map, we have T (A) is compact for

each compact subset A of Y . Hence, T (A) = T (A) is compact. This shows
that condition (iv) of Theorem 3.2 is satisfied.

(v) Let D = [1, 2] ⊂ X = [1,+∞). Then D is nonempty compact. For each
N ∈ 〈Y 〉, let LN = [0,maxN ]. Obviously, LN is a compact convex subset of
Y containing N such that T (LN) \D ⊂ ∪{int S−(y) : y ∈ LN} = S−(0) = X .
This shows that condition (v) of Theorem 3.2 is satisfied.

It follows from (i)-(v) that all the conditions of Theorem 3.2 are satisfied.
As a simple consequence of Theorem 3.2, we have the following fixed point

result, which is indeed a proper generalization of Fan-Browder fixed point the-
orem [4].

Corollary 3.1. Let (X ; Γ) be an abstract convex topological space with 1X ∈
RC(X,X). Let S,Q : X ⊸ X be two maps satisfying the following conditions:

(i) X =
⋃

y∈X int S−(y);

(ii) for each x ∈ X, M ∈ 〈S(x)〉 implies ΓM ⊂ Q(x);
(iii) there exists a nonempty compact subset D of X such that for each

N ∈ 〈X〉, there exists a compact Γ-convex subset LN of X containing

N such that LN \D ⊂ ∪{int S−(y) : y ∈ LN}.

Then there exists x0 ∈ X such that x0 ∈ Q(x0).

Proof. The conclusion follows from Theorem 3.2 by letting X = Y and T (x) =
{x} for all x ∈ X . This completes the proof. �

Remark 3.3. (a) For any G-convex space (X ; Γ), since the identity map 1X ∈
RC(X,X)∩RO(X,X), we know that if (X ; Γ) is a G-convex space, then Corol-
lary 3.1 reduces to Lemma 2 in Balaj and Lin [3]; (b) Corollary 3.1 also gener-
alizes Theorem 4 in [26] from G-convex spaces to abstract convex topological
spaces; (c) If T is compact or X is compact, then condition (iii) becomes su-
perfluous.

Theorem 3.3. Let X be a topological space, (Y ; Γ) be an abstract convex space

and Z be a nonempty set. Let F : X ⊸ Z, P : Y ⊸ Z, Q : X ⊸ Y and

T : Y ⊸ X be four maps satisfying the following conditions:

(i) Q has Γ-convex values;
(ii) for each x ∈ X, {y ∈ Y : F (x) ∩ P (y) 6= ∅} ⊂ Q(x);
(iii) X =

⋃

z∈P (Y ) int F
−(z);
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(iv) T ∈ RC(Y,X);

(v) for each compact subset A of Y , T (A) is compact;
(vi) there exists a nonempty compact subset D of X such that for each

N ∈ 〈Y 〉, there exists a compact Γ-convex subset LN of Y containing

N such that T (LN) \D ⊂
⋃

y∈LN
int {x ∈ X : F (x) ∩ P (y) 6= ∅}.

Then there exists (x0, y0) ∈ X × Y such that x0 ∈ T (y0) and y0 ∈ Q(x0).

Proof. Define the map S : X ⊸ Y by

S(x) = {y ∈ Y : F (x) ∩ P (y) 6= ∅}, ∀x ∈ X.

Then

S−(y) = {x ∈ X : F (x) ∩ P (y) 6= ∅}, ∀y ∈ Y.

It is easy to see that for a family {Ai}i∈I of subsets of a topological space,
⋃

i∈I intAi ⊂ int(
⋃

i∈I Ai). Having this fact in mind we obtain
⋃

y∈Y

int S−(y) =
⋃

y∈Y

int {x ∈ X : F (x) ∩ P (y) 6= ∅}

=
⋃

y∈Y

int





⋃

z∈P (y)

F−(z)





⊃
⋃

y∈Y

⋃

z∈P (y)

int F−(z)

=
⋃

z∈P (Y )

int F−(z).

Thus, by condition (iii) it follows that X =
⋃

y∈Y int S−(y).

By condition (ii), for each x ∈ X and M ∈ 〈S(x)〉 we have M ∈ 〈Q(x)〉.
By condition (i), ΓM ⊂ Q(x). The conclusion follows from Theorem 3.2. This
completes the proof. �

Remark 3.4. If T is compact or X is compact, then conditions (v) and (vi)
become superfluous.

Example 3.3 Let X = [1,+∞) be endowed with Euclidean topology, Y =
[0,+∞) with Γ = co and Z = [0,+∞). Let F : X ⊸ Z, P : Y ⊸ Z,
Q : X ⊸ Y and T : Y ⊸ X be four maps defined, respectively, by

F (x) = {0}, ∀x ∈ X,

P (y) =

{

Z, if y = 0,
∅, if y > 0,

Q(x) = [0, x), ∀x ∈ X

and

T (y) = {y + 1}, ∀y ∈ Y.

Then we can check that all the conditions of Theorem 3.3 are satisfied.
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(i) For each x ∈ X , Q(x) = [0, x) is convex and so is Γ-convex. This shows
that condition (i) of Theorem 3.3 is satisfied.

(ii) For each x ∈ X , {y ∈ Y : F (x)∩ P (y) 6= ∅} = {0} ⊂ [0, x) = Q(x). This
shows that condition (ii) of Theorem 3.3 is satisfied.

(iii) Since

F−(z) =

{

X, if z = 0,
∅, if z > 0,

and P (Y ) = Z, we have

X = F−(0) =
⋃

z∈Z

int F−(z) =
⋃

z∈P (Y )

int F−(z).

This shows that condition (iii) of Theorem 3.3 is satisfied.
(iv) By Example 3.2(iii), we have T ∈ RC(Y,X). Thus condition (iv) of

Theorem 3.3 is satisfied.
(v) By Example 3.2(iv), for each compact subset A of Y , T (A) is compact.

Thus condition (v) of Theorem 3.3 is satisfied.
(vi) Let D = [1, 2] ⊂ X = [1,+∞). Then D is nonempty compact. For each

N ∈ 〈Y 〉, let LN = [0,maxN ]. Obviously, LN is a compact convex subset of
Y containing N such that

T (LN) \D ⊂
⋃

y∈LN

int {x ∈ X : F (x) ∩ P (y) 6= ∅}

= int {x ∈ X : F (x) ∩ P (0) 6= ∅} = X.

Thus condition (vi) of Theorem 3.3 is satisfied.
It follows from (i)-(vi) that all the conditions of Theorem 3.3 are satisfied.

Corollary 3.2. Let (X ; Γ) be an abstract convex topological space with 1X ∈
RC(X,X) and Z be a nonempty set. Let F, P : X ⊸ Z and Q : X ⊸ X be

three maps satisfying the following conditions:

(i) Q has Γ-convex values;
(ii) for each x ∈ X, {y ∈ X : F (x) ∩ P (y) 6= ∅} ⊂ Q(x);
(iii) X =

⋃

z∈P (X) int F
−(z);

(iv) there exists a nonempty compact subset D of X such that for each

N ∈ 〈X〉, there exists a compact Γ-convex subset LN of X containing

N such that LN \D ⊂
⋃

y∈LN
int {x ∈ X : F (x) ∩ P (y) 6= ∅}.

Then there exists x0 ∈ X such that x0 ∈ Q(x0).

Remark 3.5. (a) When (X ; Γ) is a G-convex space, Corollary 3.2 reduces to
Theorem 1 in Balaj and Lin [3]; (b) If T is compact or X is compact, then
condition (iv) becomes superfluous.

In particular, when Q(x) = {y ∈ Y : F (x)∩P (y) 6= ∅}, Theorem 3.3 reduces
to the following result:
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Theorem 3.4. Let X be a topological space, (Y ; Γ) be an abstract convex space

and Z be a nonempty set. Let F : X ⊸ Z, P : Y ⊸ Z and T : Y ⊸ X be

three maps satisfying the following conditions:

(i) for each x ∈ X, {y ∈ Y : F (x) ∩ P (y) 6= ∅} is Γ-convex;
(ii) X =

⋃

z∈P (Y ) int F
−(z);

(iii) T ∈ RC(Y,X);

(iv) for each compact subset A of Y , T (A) is compact;
(v) there exists a nonempty compact subset D of X such that for each

N ∈ 〈Y 〉, there exists a compact Γ-convex subset LN of Y containing

N such that T (LN) \D ⊂
⋃

y∈LN
int {x ∈ X : F (x) ∩ P (y) 6= ∅}.

Then there exists (x0, y0) ∈ X×Y such that x0 ∈ T (y0) and F (x0)∩P (y0) 6= ∅.

Remark 3.6. If T is compact or X is compact, then conditions (iv) and (v)
become superfluous.

Example 3.4 Let X = [1,+∞) be endowed with Euclidean topology, Y =
[0,+∞) with Γ = co and Z = [0,+∞). Let F : X ⊸ Z, P : Y ⊸ Z and
T : Y ⊸ X be three maps defined, respectively, by

F (x) = {0}, ∀x ∈ X,

P (y) =

{

Z, if y = 0,
∅, if y > 0

and

T (y) = {y + 1}, ∀y ∈ Y.

Then we can check that all the conditions of Theorem 3.4 are satisfied. In fact,
for each x ∈ X , {y ∈ Y : F (x)∩P (y) 6= ∅} = {0} is convex, and so is Γ-convex.
This shows that condition (i) of Theorem 3.4 is satisfied. Furthermore, by
Example 3.3(iii), (iv), (v) and (vi), we know that conditions (ii), (iii), (iv) and
(v) of Theorem 3.4 are satisfied.

Corollary 3.3. Let (X ; Γ) be an abstract convex topological space with 1X ∈
RC(X,X) and Z be a nonempty set. Let F, P : X ⊸ Z be two maps satisfying

the following conditions:

(i) for each x ∈ X, {y ∈ X : F (x) ∩ P (y) 6= ∅} is Γ-convex;
(ii) X =

⋃

z∈P (X) int F
−(z);

(iii) there exists a nonempty compact subset D of X such that for each

N ∈ 〈X〉, there exists a compact Γ-convex subset LN of X containing

N such that LN \D ⊂
⋃

y∈LN
int {x ∈ X : F (x) ∩ P (y) 6= ∅}.

Then there exists x0 ∈ X such that F (x0) ∩ P (x0) 6= ∅.

Remark 3.7. (a) When (X ; Γ) is a G-convex space, Corollary 3.3 reduces to
Theorem 2 in Balaj and Lin [3], which generalizes Theorem 8 of [2] and Theorem
3.6 of [10]; (b) If T is compact or X is compact, then condition (iii) becomes
superfluous.
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4. Alternative theorems and minimax inequalities

Recall that a point x0 ∈ X is a maximal element for a map F : X ⊸ Z
if F (x0) = ∅. From Theorem 3.4, we get the following alternative theorem
concerning the existence of maximal elements.

Theorem 4.1. Let X be a topological space, (Y ; Γ) be an abstract convex space

and Z be a nonempty set. Let F : X ⊸ Z, P : Y ⊸ Z and T : Y ⊸ X be

three maps satisfying the following conditions:

(i) for each x ∈ X, {y ∈ Y : F (x) ∩ P (y) 6= ∅} is Γ-convex;
(ii) F− is transfer open valued;
(iii) T ∈ RC(Y,X);

(iv) for each compact subset A of Y , T (A) is compact;
(v) there exists a nonempty compact subset D of X such that for each

N ∈ 〈Y 〉, there exists a compact Γ-convex subset LN of Y containing

N such that T (LN) \D ⊂
⋃

y∈LN
int {x ∈ X : F (x) ∩ P (y) 6= ∅};

(vi) for each y ∈ Y and x ∈ T (y), we have F (x) ∩ P (y) = ∅.

Then at least one of the following assertions holds:
(a) There exists x0 ∈ X such that F (x0) = ∅;
(b) There exists z0 ∈ Z such that P−(z0) = ∅.

Proof. Suppose the conclusion would be false. Then F has nonempty values
and P (Y ) = Z. Thus, by Lemma 2.1 we have

X =
⋃

z∈Z

int F−(z) =
⋃

z∈P (Y )

int F−(z).

By Theorem 3.4, there exists (x0, y0) ∈ X × Y such that x0 ∈ T (y0) and
F (x0)∩P (y0) 6= ∅. This contradicts condition (vi), and completes the proof. �

Remark 4.1. If T is compact or X is compact, then conditions (iv) and (v)
become superfluous.

Corollary 4.1. Let (X ; Γ) be an abstract convex topological space with 1X ∈
RC(X,X) and Z be a nonempty set. Let F, P : X ⊸ Z be two maps satisfying

the following conditions:

(i) for each x ∈ X, {y ∈ X : F (x) ∩ P (y) 6= ∅} is Γ-convex;
(ii) F− is transfer open valued;
(iii) there exists a nonempty compact subset D of X such that for each

N ∈ 〈X〉, there exists a compact Γ-convex subset LN of X containing

N such that LN \D ⊂
⋃

y∈LN
int {x ∈ X : F (x) ∩ P (y) 6= ∅};

(iv) for each x ∈ X, F (x) ∩ P (x) = ∅.

Then at least one of the following assertions holds:
(a) There exists x0 ∈ X such that F (x0) = ∅;
(b) There exists z0 ∈ Z such that P−(z0) = ∅.
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Remark 4.2. (a) When (X ; Γ) is a G-convex space, Corollary 4.1 reduces to
Theorem 3 in Balaj and Lin [3]; (b) If T is compact or X is compact, then
condition (iii) becomes superfluous.

Corollary 4.2. In Theorem 4.1, if we assume further that P (Y ) = Z, then

there exists x0 ∈ X such that F (x0) = ∅.

Corollary 4.3. Let (X ; Γ) be an abstract convex topological space with 1X ∈
RC(X,X) and F : X ⊸ X be a map satisfying the following conditions:

(i) for each x ∈ X, F (x) is Γ-convex;
(ii) F− is transfer open valued;
(iii) there exists a nonempty compact subset D of X such that for each

N ∈ 〈X〉, there exists a compact Γ-convex subset LN of X containing

N such that LN \D ⊂
⋃

y∈LN
int F−(y);

(iv) for each x ∈ X, x /∈ F (x).

Then there exists x0 ∈ X such that F (x0) = ∅.

Proof. The conclusion follows from Corollaries 4.1 and 4.2 by letting X = Z
and P (x) = {x} for all x ∈ X . �

Remark 4.3. If T is compact or X is compact, then condition (iv) becomes
superfluous.

An abstract convex space (E,D; Γ) is said to be compact if E is a compact
topological space. From now on, for simplicity, we are mainly concerned with
compact abstract convex space (X ; Γ) having 1X ∈ RC(X,X). For example,
any compact G-convex space, any compact H-space, or any compact convex
space is such a space.

From Corollary 3.2, we get the following alternative theorem.

Definition 4.1 ([6]). Let X be a topological space and Z be a nonempty
set. A function f : X × Z → R = R ∪ {±∞} is said to be α-transfer upper
semicontinuous (α-transfer u.s.c.) in the first variable for some α ∈ R, if for
each (x, z) ∈ X×Z with f(x, z) < α there exist a neighborhood N(x) of x and
a point z′ ∈ Z such that f(x′, z′) < α for all x′ ∈ N(x). If f is α-transfer upper
semicontinuous in the first variable for each α ∈ R, we say that f is transfer
upper semicontinuous in the first variable.

Theorem 4.2. Let (X ; Γ) be a compact abstract convex space with 1X ∈
RC(X,X) and Z be a nonempty set. Let f, g : X ×Z → R, h : X ×X → R be

three functions and α, β, γ be three real numbers such that

(i) for each x ∈ X, the set {y ∈ X : h(x, y) < γ} is Γ-convex;
(ii) f is α-transfer u.s.c. in the first variable;
(iii) for any x, y ∈ X and z ∈ Z, the following implication holds: f(x, z) < α

and g(y, z) < β ⇒ h(x, y) < γ;
(iv) h(x, x) ≥ γ for all x ∈ X.

Then at least one of the following assertions holds:
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(a) There exists x0 ∈ X such that f(x0, z) ≥ α for all z ∈ Z.

(b) There exists z0 ∈ Z such that g(x, z0) ≥ β for all x ∈ X.

Proof. Let F, P : X ⊸ Z and Q : X ⊸ X be defined, respectively, by

F (x) = {z ∈ Z : f(x, z) < α}, ∀x ∈ X,

P (x) = {z ∈ Z : g(x, z) < β}, ∀x ∈ X

and

Q(x) = {y ∈ X : h(x, y) < γ}, ∀x ∈ X.

Suppose that both assertions (a) and (b) were false, i.e.,

(1) for each x ∈ X there is z ∈ Z such that f(x, z) < α;
(2) for each z ∈ Z there is x ∈ X such that g(x, z) < β.

By (2), P (X) = Z. Let x ∈ X . By (1) and (ii), there exists a neighborhood
N(x) of x and z′ ∈ Z such that f(x′, z′) < α for all x′ ∈ N(x). Hence
x ∈ int F−(z′). Since x has been arbitrarily chosen, we infer that

X =
⋃

z∈Z

int F−(z) =
⋃

z∈P (X)

int F−(z).

By (i), Q(x) is Γ-convex for each x ∈ X . By (iii), for each x ∈ X , {y ∈
X : F (x) ∩ P (y) 6= ∅} ⊂ Q(x). Taking into account Remark 3.5(b), Corollary
3.2 implies that there exists x0 ∈ X such that x0 ∈ Q(x0). It follows that
h(x0, x0) < γ, which contradicts with condition (iv). This completes the proof.

�

Remark 4.4. When (X ; Γ) is a compact G-convex space, Theorem 4.2 reduces
to Theorem 12 in Balaj and Lin [3].

Definition 4.2 ([18]). For abstract convex space (X ; Γ), a real function f :
X → R is said to be quasiconvex (resp. quasiconcave) if {x ∈ X : f(x) < r}
(resp. {x ∈ X : f(x) > r}) is Γ-convex for each r ∈ R.

From Theorem 4.2, we derive the following minimax inequality.

Theorem 4.3. Let (X ; Γ) be a compact abstract convex space with 1X ∈
RC(X,X) and Z be a nonempty set. Let f, g : X×Z → R and h : X×X → R

be three functions such that

(i) h(x, ·) is quasiconvex for each x ∈ X ;
(ii) f is transfer u.s.c. in the first variable;
(iii) for any x, y ∈ X and z ∈ Z, h(x, y) ≤ f(x, z) + g(y, z).

Then

inf
x∈X

h(x, x) ≤ sup
x∈X

inf
z∈Z

f(x, z) + sup
z∈Z

inf
x∈X

g(x, z)

with the convention ∞+ (−∞) = ∞.
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Proof. We may assume that

inf
x∈X

h(x, x) > −∞, sup
x∈X

inf
z∈Z

f(x, z) < +∞, sup
z∈Z

inf
x∈X

g(x, z) < +∞.

Suppose the conclusion of Theorem 4.3 would be false, i.e.,

inf
x∈X

h(x, x) > sup
x∈X

inf
z∈Z

f(x, z) + sup
z∈Z

inf
x∈X

g(x, z).

Choose α, β, γ ∈ R such that

sup
x∈X

inf
z∈Z

f(x, z) < α, sup
z∈Z

inf
x∈X

g(x, z) < β, inf
x∈X

h(x, x) > γ and α+ β < γ.

It is easy to verify that functions f, g and h satisfy all the conditions of Theorem
4.2. We prove that neither assertion (a) nor assertion (b) of the conclusion of
Theorem 4.2 can be true. In fact, if (a) happens, then

α ≤ inf
z∈Z

f(x0, z) ≤ sup
x∈X

inf
z∈Z

f(x, z),

a contradiction. If (b) happens, then

sup
z∈Z

inf
x∈X

g(x, z) ≥ inf
x∈X

g(x, z0) ≥ β,

a contradiction again. This completes the proof. �

Remark 4.5. When (X ; Γ) is a compact G-convex space, Theorem 4.3 reduces
to Theorem 13 in Balaj and Lin [3].
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