• Title/Summary/Keyword: and binomial coefficient

Search Result 36, Processing Time 0.02 seconds

Comparison of Three Binomial-related Models in the Estimation of Correlations

  • Moon, Myung-Sang
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.585-594
    • /
    • 2003
  • It has been generally recognized that conventional binomial or Poisson model provides poor fits to the actual correlated binary data due to the extra-binomial variation. A number of generalized statistical models have been proposed to account for this additional variation. Among them, beta-binomial, correlated-binomial, and modified-binomial models are binomial-related models which are frequently used in modeling the sum of n correlated binary data. In many situations, it is reasonable to assume that n correlated binary data are exchangeable, which is a special case of correlated binary data. The sum of n exchangeable correlated binary data is modeled relatively well when the above three binomial-related models are applied. But the estimation results of correlation coefficient turn to be quite different. Hence, it is important to identify which model provides better estimates of model parameters(success probability, correlation coefficient). For this purpose, a small-scale simulation study is performed to compare the behavior of above three models.

Negative Binomial Varying Coefficient Partially Linear Models

  • Kim, Young-Ju
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.809-817
    • /
    • 2012
  • We propose a semiparametric inference for a generalized varying coefficient partially linear model(VCPLM) for negative binomial data. The VCPLM is useful to model real data in that varying coefficients are a special type of interaction between explanatory variables and partially linear models fit both parametric and nonparametric terms. The negative binomial distribution often arise in modelling count data which usually are overdispersed. The varying coefficient function estimators and regression parameters in generalized VCPLM are obtained by formulating a penalized likelihood through smoothing splines for negative binomial data when the shape parameter is known. The performance of the proposed method is then evaluated by simulations.

Flow Through Rubble Mound Dike (사석제를 투과하는 흐름)

  • 김채수;남선우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.4
    • /
    • pp.109-116
    • /
    • 1988
  • This study was aimed at determining a regime of flow through rubble mound dike consisted of all sized quarrystons, and deriving a relationship between hydraulic gradient (I) and mean flow velocity (V) through the dike. The analysis was carried out with the data observed after final gap closing of the Haenam Sea dike from May, 6 to May, 14, 1987. The resu]ts are summarized as follows: 1. The regime of flow would be defined as the turbulent flow. 2. As to the relationships, two kinds of formula that are exponential and binomial were obtained. Exponential formula: I=2.099V 1.2888 Binomial formula: I=0.6113V+5.5235V$^2$ 3. Correlation coefficient of the former was 0.824 and that of the latter was 0.821, and the deviations between observed data and estimated were 0.0070 and 0.0064 respectively. 4. Comparing the correlation coefficient, both the equations have the same correlation coefficients, but in case of the deviation the binomial equation was better than the exponential equation. Therefore, the binomial equation is proposed for analyzing the flow through rubble mound dike.

  • PDF

MERSENNE PRIME FACTOR AND SUM OF BINOMIAL COEFFICIENTS

  • JO, GYE HWAN;KIM, DAEYEOUL
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.1_2
    • /
    • pp.61-68
    • /
    • 2022
  • Let Mp := 2p - 1 be a Mersenne prime. In this article, we find integers a, b, c, d, e and n satisfying $\sum_{t=0}^{n}\;\({an+b\\ct+d}\)\;=\;M_{p^e}$ given a Mersenne prime number Mp. In order to find a special case that satisfies the above results, we reprove an well-known relation of a certain sum of binomial coefficients and a divisor function.

Effects of Overdispersion on Testing for Serial Dependence in the Time Series of Counts Data

  • Kim, Hee-Young;Park, You-Sung
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.6
    • /
    • pp.829-843
    • /
    • 2010
  • To test for the serial dependence in time series of counts data, Jung and Tremayne (2003) evaluated the size and power of several tests under the class of INARMA models based on binomial thinning operations for Poisson marginal distributions. The overdispersion phenomenon(i.e., a variance greater than the expectation) is common in the real world. Overdispersed count data can be modeled by using alternative thinning operations such as random coefficient thinning, iterated thinning, and quasi-binomial thinning. Such thinning operations can lead to time series models of counts with negative binomial or generalized Poisson marginal distributions. This paper examines whether the test statistics used by Jung and Tremayne (2003) on serial dependence in time series of counts data are affected by overdispersion.

STRUCTURE OF APÉRY-LIKE SERIES AND MONOTONICITY PROPERTIES FOR BINOMIAL SUMS

  • Alkan, Emre
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.225-242
    • /
    • 2017
  • A family of $Ap{\acute{e}}ry$-like series involving reciprocals of central binomial coefficients is studied and it is shown that they represent transcendental numbers. The structure of such series is further examined in terms of finite combinations of logarithms and arctangents with arguments and coefficients belonging to a suitable algebraic extension of rationals. Monotonicity of certain quotients of weighted binomial sums which arise in the study of competitive cheap talk models is established with the help of a continuous extension of the discrete model at hand. The monotonic behavior of such quotients turns out to have important applications in game theory.

A Study on Binomial Coefficient as an Enriched Learning Topic for the Mathematically Gifted Students (수학영재의 심화학습을 위한 이항계수 연구)

  • Yoon, Mabyong;Jeon, Youngju
    • Journal of the Korean School Mathematics Society
    • /
    • v.19 no.3
    • /
    • pp.291-308
    • /
    • 2016
  • In this paper, we did a study on the definition and properties of binomial coefficients which can be seen with the topic for the enrichment of mathematically gifted students. Using this result, studied the problem of how to solve equations containing the binomial coefficients by using the mathematical induction, binomial theorem, the definition of the combination, and road network model situations. And such contents can be adequately dealt with the subject of mathematics enrichment gifted and talented Education because mathematically gifted students may well be the subject of inquiry. In addition, it can be used to study the subject to experience a deep sense of mathematics. As this research, it will be introduced as an example to guide students.

Developing Rear-End Collision Models of Roundabouts in Korea (국내 회전교차로의 추돌사고 모형 개발)

  • Park, Byung Ho;Beak, Tae Hun
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.151-157
    • /
    • 2014
  • This study deals with the rear-end collision at roundabouts. The purpose of this study is to develop the accident models of rear-end collision in Korea. In pursuing the above, this study gives particular attention to developing the appropriate models using Poisson, negative binomial model, ZAM, multiple linear and nonlinear regression models, and statistical analysis tools. The main results are as follows. First, the Vuong statistics and overdispersion parameters indicate that ZIP is the most appropriate model among count data models. Second, RMSE, MPB, MAD and correlation coefficient tests show that the multiple nonlinear model is the most suitable to the rear-end collision data. Finally, such the independent variables as traffic volume, ratio of heavy vehicle, number of circulatory roadway lane, number of crosswalk and stop line are adopted in the optimal model.

SOME SUMS VIA EULER'S TRANSFORM

  • Nese Omur;Sibel Koparal;Laid Elkhiri
    • Honam Mathematical Journal
    • /
    • v.46 no.3
    • /
    • pp.365-377
    • /
    • 2024
  • In this paper, we give some sums involving the generalized harmonic numbers Hrn (σ) and the (q, r)-binomial coefficient $\left({L \atop k}\right)_{q,r}$ by using Euler's transform. For example, for (c, r) ∈ ℤ+ × ℝ+, $${\sum_{n=0}^{\infty}}{\sum_{k=0}^{n}}\,(-1)^k\,\left({n+r \atop n-k}\right)\frac{c^{n+1}H^{r-1}_k({\sigma})}{(n+1)(1+c)^{n+1}}=-(c+{\frac{1}{{\sigma}}})\,{\ln}\,(1+c{\sigma})+c,$$ and $${\sum_{k=0}^{n}}\left({n \atop k}\right)\left({L \atop k}\right)_{2,r}={\sum_{j=0}^{n}}{\sum_{k=0}^{j}}(-1)^k\left({j-k+2L+r \atop j-k}\right)\left({r \atop n-j}\right)\left({L \atop k}\right)_2,$$ where σ is appropriate parameter, Hrn (σ) is the generalized hyperharmonic number of order r and $\left({L \atop k}\right)_q$ is the q-binomial coefficient.