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STRUCTURE OF APÉRY-LIKE SERIES AND

MONOTONICITY PROPERTIES FOR BINOMIAL SUMS

Emre Alkan

Abstract. A family of Apéry-like series involving reciprocals of central
binomial coefficients is studied and it is shown that they represent tran-
scendental numbers. The structure of such series is further examined
in terms of finite combinations of logarithms and arctangents with ar-
guments and coefficients belonging to a suitable algebraic extension of
rationals. Monotonicity of certain quotients of weighted binomial sums
which arise in the study of competitive cheap talk models is established
with the help of a continuous extension of the discrete model at hand.

The monotonic behavior of such quotients turns out to have important
applications in game theory.

1. Introduction

This paper is devoted to a study of sums and series involving binomial coef-
ficients. In the first part, we consider a family of series concerning reciprocals
of central binomial coefficients and establish structural properties of them in
the context of Mahler’s classification of transcendental numbers. We are then
led to representations of such series as finite combinations of logarithms and
arctangents with arguments and coefficients belonging to a specified algebraic
extension of Q. This motivates us to look at more general finite combinations
of logarithms and arctangents with algebraic arguments and coefficients, and
investigate their structure from a similar point of view. In the second part, we
look at certain quotients of weighted binomial sums which arise naturally in
the study of competitive cheap talk models belonging to game theory. The de-
sired monotonicity of such quotients which has potential applications in game
theory is obtained by introducing a continuous extension of the discrete model
at hand. In particular, an analytic function interpolating these quotients at
positive integers is shown to exist and then one is able to infer the stronger
result that this function is monotonic on all of its domain. Fast converging se-
ries using reciprocals of binomial coefficients became a central topic of research
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after Apéry’s seminal work [3] on the irrationality of ζ(3), where

ζ(s) =
∞
∑

n=1

1

ns

is the Riemann zeta function for R(s) > 1. The series

ζ(3) =
5

2

∞
∑

n=1

(−1)n−1

(

2n
n

)

n3

was the starting point of Apéry in his proof. For other forms of these series
arising from Ramanujan’s notebooks such as

ζ(3) =
7π3

180
− 2

∞
∑

n=1

1

n3(e2πn − 1)
,

the reader is referred to the works of Berndt [5], [6], especially Chap. 14 of [7].
Another striking example

ζ(2)

3
=

∞
∑

n=1

1
(

2n
n

)

n2

represents the transcendental number π2

18
. The author [1] found new families

of rapidly converging series converging to the special values of L-functions and
to Catalan’s constant defined as

∞
∑

n=0

(−1)n

(2n+ 1)2
.

Apart from these sporadic examples, our first result is concerned with the study
of an infinite family of Apéry-like series and their structure in terms of Mahler’s
approach to classifying real numbers. Mahler [10] originally partitioned real
numbers into four subsets taking into account the accuracy with which nonzero
polynomials with integer coefficients approximate zero when evaluated at a
given real number. These four subsets are called A,S, T and U -numbers, where
A-numbers correspond to the set of real algebraic numbers and S, T and U -
numbers form a partition of the real transcendental numbers. To be precise,
for a given positive integer n and real number H ≥ 1, define

wn(ξ,H) := min{|P (ξ)| : P (x) ∈ Z[x], H(P ) ≤ H, deg(P ) ≤ n, P (ξ) 6= 0},

where deg(P ) and H(P ) denote the degree and the height of the polynomial,
namely the maximum of moduli of its coefficients. Based on this, Mahler’s
classification makes use of the quantities

wn(ξ) := lim sup
H→∞

− logwn(ξ,H)

logH
and w(ξ) := lim sup

n→∞

wn(ξ)

n
.

A transcendental number is a U -number if wn(ξ) = ∞ from some n onwards.
Historically, the very first examples of transcendental numbers, namely the
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Liouville numbers, were among the U -numbers and one can say that transcen-
dental numbers that are not U -numbers are harder to deal with. For some
recent results and literature on this topic, see [2]. We are now ready to give
the statement.

Theorem 1. Let {ǫ1, . . . , ǫk} be all kth roots of i. Consider the field

F = Q(
√
1− 4ǫ1,

√
1− 4ǫ1, . . . ,

√
1− 4ǫk,

√
1− 4ǫk) ∩ R.

Then for k ≥ 1,

Mk =

∞
∑

n=1

(−1)n−1

(

4kn−2k
2kn−k

)

(2n− 1)(4kn− 2k + 1)

is transcendental but not a U -number with wn(Mk) = Ok(n
2k+2) for n ≥ 1,

where the implied constant depends only on k. Moreover, Mk can be written

as an F×-linear combination of k logarithms and 2k arctangents of numbers

that are also in F×, where the logarithmic terms are all nonvanishing and

F× = F − {0}. Consequently,

λ = π

√

1 +
√
17

8
+

√√
17− 1

2
log

(

1 +
√
17 +

√

2 + 2
√
17

4

)

−

√

2 + 2
√
17 arctan

(

1 +
√
17 +

√

2 + 2
√
17

4

)

is transcendental but not a U -number with wn(λ) = O(n4) for n ≥ 1.

Motivated by Theorem 1, consider sums formed with algebraic combinations of
logarithms and arctangents. The result below generalizes and improves Theo-
rem 3 of [2].

Theorem 2. Let αj , βj for 1 ≤ j ≤ r and µj , γj for 1 ≤ j ≤ m be positive

algebraic numbers such that γj > 1 for all j and βj’s are distinct. Then

Kr,m =

r
∑

j=1

αj arctanβj +

m
∑

j=1

µj log γj

is transcendental but is not a U -number with

wn(Kr,m) = Oαj ,βj ,µj ,γj
(n2r+m+2)

if no βj > 1,

wn(Kr,m) = Oαj ,βj ,µj ,γj
(n2r+m+4)

if some βj’s are > 1 but no βj = 1 and

wn(Kr,m) = Oαj ,βj ,µj ,γj
(n2r+m+2)

if some βj’s are > 1 and exactly one βj = 1. If α 6= 0, β 6= 0, µ 6= 1, µ > 0
are real algebraic numbers, then

L1 = α arctanβ + logµ



228 EMRE ALKAN

is transcendental but not a U -number with wn(L1) = Oα,β,µ(n
5) if |β| ≤ 1

and wn(L1) = Oα,β,µ(n
7) if |β| > 1. Moreover, if α 6= 0 and β /∈ Q are real

algebraic numbers, then

L2 = βπ + arctanα

is transcendental but not a U -number with wn(L2) = Oα,β(n
6).

Defining (a)n = a(a+ 1) · · · (a+ n− 1), the family of series

Nm = −2m2 +

∞
∑

n=1

(n− 1)!
(

1
m

)

n
(

1
m

)

2n+1

was studied in [2] and it was shown that Nm can be written as an algebraic
combination of π and m logarithms of algebraic numbers. Thus taking r = 1 in
the case when no βj > 1, one infers from Theorem 2 above, the better bound
wn(Nm) = Om(nm+4) for all m ≥ 1 and n ≥ 1. Similarly, for the numbers

γ =
π

2
+
√
3 log(2 +

√
3)

and

η =
π
√
3
cos

(

2π

9

)

− cos
(π

9

)

log sin
( π

18

)

+ cos

(

2π

9

)

log cos
(π

9

)

+ cos

(

4π

9

)

log cos

(

2π

9

)

that appear in Corollary 1 of [2], the improvementswn(γ) = O(n5) and wn(η) =
O(n7) follow from Theorem 2.

Our next problem arises in competitive cheap talk models of game theory.
This is done in the setting of simultaneous communication with n ≥ 2 agents.
One can then focus on the symmetric communication equilibrium, where the
agents use the same message set and ties are broken in a random and symmetric
manner among the agents. As a result of the indifference equation for equi-
librium, one is naturally led to analyze certain quotients of weighted binomial
sums in the form

∑n

j=1

(

n

j

)

P (mn)
jP (m < mn)

n−j j

1+j
∑n

j=1

(

n
j

)

P (mn+1)jP (m < mn+1)n−j 1
1+j

,

where P (−) denotes the probability of a certain event. For details, let us refer to
the paper of Li, Rantakari and Young [9] (see also [11]). The strict monotonicity
of the above quotient, as the number of agents increases, becomes important
since it is possible to show as a consequence of this that, in the case of symmetric
equilibrium, the incremental step size of partitions decreases as n increases (see
Proposition 10 in [9]). Here we show that such quotients are indeed strictly
decreasing even with more general parameters not necessarily resulting from
probabilities. It turns out that one can find a strictly decreasing analytic
function interpolating these quotients at integers. Hence there is a universal
behavior for the quotients not directly related to game theoretic considerations.



STRUCTURE OF APÉRY-LIKE SERIES AND MONOTONICITY PROPERTIES 229

Theorem 3. Let b, d, y be positive real numbers with d < y and let a = b/y,

c = d/y. Then there exists an analytic function S : (1,∞) → R depending only

on a and c such that S(x) is strictly decreasing for x > 1 and

S(n+ 1) =

∑n

j=1

(

n

j

)

dj(y − d)n−j j

1+j
∑n

j=1

(

n
j

)

bjyn−j 1
1+j

for all positive integers n.

As a further application of our approach to Theorem 3, it is possible to give
the following variation on an elegant problem of Erdös (see p. 10 of [13]) which
serves as a converse to L’Hospital’s rule under suitable growth conditions on
the derivatives.

Theorem 4. Let f be a C∞ function defined for x > 1 and assume that

|f (n+1)(x)| = On(|f
(n)(x)|)

holds for all n ≥ 1 and large enough x, where the implied constant depends only

on n. If

lim
x→∞

f(x)

ex
= 1,

then

lim
x→∞

f (n)(x)

ex
= 1

for all n ≥ 0.

2. A preliminary result

For the proof of Theorem 3, we will need the following.

Theorem 5. Assume that f = f(x) and g = g(x) are functions that are

continuous for x ≥ x0 and differentiable for x > x0 with f(x0) = 0 = g(x0).

If g and g′ are positive and f ′

g′
is strictly decreasing for x > x0, then

f

g
is also

strictly decreasing for x > x0.

Proof. Since f and g are differentiable for x > x0 and g is positive for x > x0,
f

g
is also differentiable for x > x0 and it suffices to show that

(

f(x)

g(x)

)′

=
f ′(x)g(x) − f(x)g′(x)

(g(x))2
< 0

for x > x0. Noting that f and g are continuous for x ≥ x0 and differentiable
for x > x0, we may apply Cauchy’s mean value theorem (see Chap. 4 of [12])
on any interval of the form [x0, x] with x0 < x to see that

(f(x)− f(x0))g
′(λ) = (g(x)− g(x0))f

′(λ)

for some x0 < λ < x. Using f(x0) = 0 = g(x0), we have

f(x)

g(x)
=

f ′(λ)

g′(λ)
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and since f ′

g′
is strictly decreasing for x > x0, the claim follows from

f ′(x)

g′(x)
<

f ′(λ)

g′(λ)

as g and g′ are positive for x > x0. �

3. Proof of Theorem 4

First let us write f(x) = (1 + g(x))ex with limx→∞ g(x) = 0. We have

(3.1) g′(x) =
f ′(x)− f(x)

ex
,

(3.2) f ′(x) = (1+ g(x)+ g′(x))ex and f ′′(x) = (1+ g(x)+2g′(x)+ g′′(x))ex.

By hypothesis, |f ′′(x)| < c|f ′(x)| when x is large enough, say for x > a > 1,
where c > 0 is a constant. Thus f ′(x) is never zero when x > a and (3.2) gives

(3.3) |1 + g(x) + 2g′(x) + g′′(x)| < c|1 + g(x) + g′(x)|

for x > a. By Cauchy’s mean value theorem

(3.4) (f ′(x)− f ′(a))f ′(λ) = (f(x) − f(a))f ′′(λ)

follows with some a < λ < x. Using (3.4) and the fact that f ′(λ) 6= 0, one
obtains

(3.5) |f ′(x) − f ′(a)| =
|f ′′(λ)|

|f ′(λ)|
|f(x)− f(a)| < c|f(x)− f(a)|.

Since f(x)/ex is bounded as x tends to infinity, it is easy to see from (3.5) that
f ′(x)/ex is also bounded as x tends to infinity. Therefore, by (3.1), g′(x) is
bounded and we deduce from (3.3) that g′′(x) is bounded as x tends to infinity.
Since limx→∞ g(x) = 0, using a classical result of Landau (see Chap. 4 of [12]),
one has limx→∞ g′(x) = 0. This shows as a result of (3.2) that

lim
x→∞

f ′(x)

ex
= 1.

The general formula can now be shown by induction on the number of deriva-
tives. We may assume that g, g′, . . . , g(n) are bounded as x tends to infinity and
g, g′, . . . , g(n−1) all tend to zero as x tends to infinity. Rewriting the hypothesis

|f (n+1)(x)| = On(|f
(n)(x)|),

one gets

(3.6)

∣

∣

∣

∣

∣

∣

1 + g(x) +

n
∑

j=1

kjg
(j)(x) + g(n+1)(x)

∣

∣

∣

∣

∣

∣

< cn

∣

∣

∣

∣

∣

∣

1 + g(x) +
n−1
∑

j=1

mjg
(j)(x) + g(n)(x)

∣

∣

∣

∣

∣

∣
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for large enough x, where cn > 0 is a constant, kj and mj are positive integers.

It follows at once from (3.6) that g(n+1)(x) is bounded as x tends to infinity.
Since g(n−1)(x) tends to zero as x tends to infinity, applying again Landau’s
result, one infers that g(n)(x) tends to zero as x tends to infinity. This completes
the induction and shows that

lim
x→∞

f (n)(x)

ex
= 1

for all n ≥ 0.

4. Proof of Theorem 3

First we have
(4.1)

n
∑

j=1

(

n

j

)

bjyn−j 1

1 + j
=

n
∑

j=1

(

n

j

)

bjyn−j

∫ 1

0

tj dt =

∫ 1

0

n
∑

j=1

(

n

j

)

(bt)jyn−j dt.

Noting that

(4.2)

n
∑

j=1

(

n

j

)

(bt)jyn−j = (bt+ y)n − yn

and combining (4.1) and (4.2)

(4.3)

n
∑

j=1

(

n

j

)

bjyn−j 1

1 + j
= yn

(
∫ 1

0

(

bt

y
+ 1

)n

dt− 1

)

follows. Similarly, one obtains

(4.4)

n
∑

j=1

(

n

j

)

dj(y − d)n−j j

1 + j

=

n
∑

j=1

(

n

j

)

dj(y − d)n−j

(

1−

∫ 1

0

tj dt

)

= yn − (y − d)n −

∫ 1

0

n
∑

j=1

(

n

j

)

(td)j(y − d)n−j dt

= yn −

∫ 1

0

(y − td)n dt

= yn
(

1−

∫ 1

0

(

1−
td

y

)n

dt

)

.

By (4.3) and (4.4), we have

(4.5)

∑n

j=1

(

n
j

)

dj(y − d)n−j j

1+j
∑n

j=1

(

n

j

)

bjyn−j 1
1+j

=
1−

∫ 1

0
(1− ct)n dt

∫ 1

0
(1 + at)n dt− 1

,
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where a = b/y and c = d/y. From (4.5), we see that

(4.6)

∑n

j=1

(

n

j

)

dj(y − d)n−j j

1+j
∑n

j=1

(

n
j

)

bjyn−j 1
1+j

=
a

c

(

(1− c)n+1 + c(n+ 1)− 1

(1 + a)n+1 − a(n+ 1)− 1

)

.

Motivated by (4.6), let us define the function S : (1,∞) → R by

(4.7) S(x) :=
a

c

(

(1− c)x + cx− 1

(1 + a)x − ax− 1

)

for any x > 1. As a consequence of (4.6) and (4.7), S(n + 1) interpolates
the quotient of weighted binomial sums in (4.6). Observe that S(x) itself is a
quotient of analytic functions so is analytic at all x > 1 as soon as (1+a)x−ax−
1 is not zero. (1 + a)x − ax− 1 is indeed positive for all x > 1 as will be shown
below. To this end, let f(x) = (1 − c)x + cx − 1 and g(x) = (1 + a)x − ax − 1
and note that f(1) = 0 = g(1). We have g′(x) = (1 + a)x log(1 + a) − a and
g′(1) = (1+ a) log(1+ a)− a so that g′(x) > g′(1) for x > 1. If 0 < a < 1, then

using log(1 + a) > a− a2

2
,

(4.8) g′(1) = (1 + a) log(1 + a)− a > 0

follows for 0 < a < 1. Moreover, d
da
((1 + a) log(1 + a)− a) = log(1+ a) > 0 for

a > 0 and (1+a) log(1+a)−a is an increasing function of a > 0. Consequently,
(4.8) holds for all a > 0 and this gives g′(x) > 0 for x > 1. Since g(1) = 0, by
the mean value theorem, one verifies that g and g′ are both positive for x > 1.
Next consider the quotient

(4.9)
f ′(x)

g′(x)
=

(1− c)x log(1− c) + c

(1 + a)x log(1 + a)− a
.

To show that (4.9) is strictly decreasing for x > 1, it suffices to check that

(4.10) f ′′(x)g′(x) − f ′(x)g′′(x) < 0

for x > 1. As f ′, g′ are continuous for x ≥ 1 and differentiable for x > 1, by
Cauchy’s mean value theorem, one obtains

(4.11)
f ′(x)− f ′(1)

g′(x)− g′(1)
=

f ′′(λ)

g′′(λ)

for some 1 < λ < x. On the other hand,

(4.12)
f ′′(x)

g′′(x)
=

(1− c)x log2(1− c)

(1 + a)x log2(1 + a)

is clearly a strictly decreasing function for x ≥ 1. (4.11) and (4.12) give that

(4.13)
f ′(x) − f ′(1)

g′(x) − g′(1)
>

f ′′(x)

g′′(x)

for x > 1. As g′(x) − g′(1) > 0 and g′′(x) > 0, we may rewrite (4.13) in the
form

(4.14) f ′′(x)g′(x)− f ′(x)g′′(x) < f ′′(x)g′(1)− g′′(x)f ′(1).
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As a result of (4.14), verifying (4.10) reduces to showing

(4.15)
f ′′(x)

g′′(x)
<

f ′(1)

g′(1)

for x > 1. But (4.12) is strictly decreasing for x ≥ 1 so that (4.15) further
reduces to showing

(4.16)
f ′′(1)

g′′(1)
<

f ′(1)

g′(1)
.

It is easy to see that

f ′(1) = (1− c) log(1− c) + c > 0

for 0 < c < 1. Thus (4.16) is equivalent to

(4.17)
(1− c) log2(1− c)

(1− c) log(1 − c) + c
=

f ′′(1)

f ′(1)
<

g′′(1)

g′(1)
=

(1 + a) log2(1 + a)

(1 + a) log(1 + a)− a
.

Finally, to obtain (4.17), consider the function

F (x) =
x log2 x

x log x− x+ 1
.

Note that limx→1 F (x) = 2. Therefore, F has a removable discontinuity at
x = 1 and we may take F (1) = 2. Observe that (4.17) is further equivalent to
F (1 − c) < F (1 + a). To see this, we show that F ′(x) > 0 for 0 < x < 1 and
for x > 1. First assume 0 < x < 1 and consider

F ′(x) =
log x((1 + x) log x+ 2− 2x)

(x log x− x+ 1)2
.

Since log x < 0 for 0 < x < 1, let us see that u(x) = (1 + x) log x+ 2 − 2x < 0
for 0 < x < 1. As limx→0+ u(x) = −∞, it is enough to check that u′(x) =
log x + 1+x

x
− 2 > 0 for 0 < x < 1. But this is equivalent to log x + 1

x
> 1.

Letting x = 1− t with 0 < t < 1,

log(1− t) +
1

1− t
= −

(

t+
t2

2
+ · · ·

)

+ 1 + t+ t2 + · · · > 1

follows. Using u(1) = 0, we see that u(x) < 0 and F ′(x) > 0 for 0 < x < 1.
Next assume x > 1. Then log x > 0. In this case we show that u(x) > 0 for
x > 1. It is enough to show that u′(x) > 0 for x > 1. Letting x = 1/(1 − y)
with 0 < y < 1, this is equivalent to

1− y − log(1− y) = 1− y + y +
y2

2
+

y3

3
+ · · · > 1.

This finishes the argument showing that f ′

g′
is strictly decreasing for x > 1.

Therefore, all of the hypotheses of Theorem 5 hold and one concludes that f
g

and S(x) are strictly decreasing for x > 1. The proof of Theorem 3 is now
complete.
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5. Proof of Theorem 1

For k ≥ 1, we have

max
0≤x≤1

(x(1 − x))k =
1

4k
.

Taking this into account, integrating by parts, using Taylor series of arctangent
and interchanging the order of summation with integration which is easily seen
to be permissible, one obtains

(5.1)

∫ 1

0

x
d
dx
(xk(1− x)k)

1 + (x(1 − x))2k
dx = −

∫ 1

0

arctan(xk(1 − x)k) dx

=

∞
∑

n=1

(−1)n

2n− 1

∫ 1

0

xk(2n−1)(1− x)k(2n−1) dx.

Moreover, by the beta function identity

(5.2)

∫ 1

0

xk(2n−1)(1 − x)k(2n−1) dx =
Γ(2kn− k + 1)2

Γ(4kn− 2k + 2)

follows, where

Γ(s) =

∫ ∞

0

e−xxs−1 dx

is the gamma function for R(s) > 0. Combining (5.1), (5.2) and evaluating the
gamma function in terms of factorials, one derives the formula

(5.3)

∫ 1

0

x
d
dx
(xk(1− x)k)

1 + (x(1 − x))2k
dx =

∞
∑

n=1

(−1)n
(

4kn−2k
2kn−k

)

(2n− 1)(4kn− 2k + 1)
.

Let P (x) = (x(1 − x))k and note that

(5.4)
P ′(x)

1 + P (x)2
=

i

2

(

P ′(x)

i+ P (x)
−

P ′(x)

−i+ P (x)

)

.

(5.4) will be used for the evaluation of the left hand side of (5.3) in another
way. Clearly, 1 + P (x)2 has no real roots and the set of roots of i + P (x) and
−i+ P (x), each containing 2k elements, form a partition of the set of roots of
1+P (x)2. Roots of −i+P (x) arise from pairs of roots of k quadratic equations
given by x2−x+ ǫj = 0 for 1 ≤ j ≤ k, where ǫj is a kth root of i. Let ωj, τj be
the roots of x2−x+ ǫj. Then ωjτj = ǫj and ωj + τj = 1. As |ωj||τj | = |ǫj | = 1,
one can assume |ωj | ≥ 1 for each j. It is easy to see that both of the roots
of x2 − x + ǫj can not have modulus ≥ 1 and the choice of ωj is unique in
each case. If ωj, τj , 1 ≤ j ≤ k, range over all roots of −i + P (x), then ωj, τj ,
1 ≤ j ≤ k, range over all roots of i + P (x). In the light of these observations,
the left hand side of (5.3) becomes

(5.5)

∫ 1

0

xP ′(x)

1 + P (x)2
dx =

i

2

(
∫ 1

0

xP ′(x)

i+ P (x)
dx−

∫ 1

0

xP ′(x)

−i+ P (x)
dx

)
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and furthermore, we have

(5.6)

∫ 1

0

xP ′(x)

−i+ P (x)
dx =

∫ 1

0





k
∑

j=1

x

x− ωj



 dx+

∫ 1

0





k
∑

j=1

x

x− τj



 dx.

Expanding the terms x
x−ωj

in (5.6) as a geometric series and interchanging

the order of summation with integration which is justified by the bounded
convergence theorem, one infers

(5.7)

∫ 1

0





k
∑

j=1

x

x− ωj



 dx = k +

∞
∑

n=0

−
∑k

j=1(ǫjτj)
n

n+ 1
.

Next using ωj + τj = 1, we see that

(5.8)

∫ 1

0





k
∑

j=1

x

x− τj



 dx =

k
∑

j=1

∫ 1

0

1− x

ωj − x
dx.

As |ωj| ≥ 1,

(5.9)
1− x

ωj − x
= (1− x)

∞
∑

n=0

xn

ωn+1
j

=

∞
∑

n=0

(ǫjτj)
n+1xn −

∞
∑

n=0

(ǫjτj)
n+1xn+1

holds for 0 ≤ x < 1. Again termwise integration is justified, and assembling
(5.8) and (5.9), one has

(5.10)

∫ 1

0





k
∑

j=1

x

x− τj



 dx =

k
∑

j=1

∞
∑

n=0

(ǫjτj)
n+1

n+ 1
−

k
∑

j=1

∞
∑

n=0

(ǫjτj)
n+1

n+ 2

= k +

∞
∑

n=0

(

∑k

j=1(ǫjτj)
n+1 − (ǫjτj)

n
)

n+ 1
.

Gathering now (5.6), (5.7) and (5.10),

(5.11)

∫ 1

0

xP ′(x)

−i+ P (x)
dx = 2k +

∞
∑

n=0

(

∑k

j=1(ǫjτj)
n+1 − 2(ǫjτj)

n
)

n+ 1

follows. Conjugating (5.11), we see that

(5.12)

∫ 1

0

xP ′(x)

i+ P (x)
dx =

∫ 1

0





k
∑

j=1

x

x− ωj



 dx+

∫ 1

0





k
∑

j=1

x

x− τj



 dx

= 2k +

∞
∑

n=0

(

∑k

j=1(ǫjτj)
n+1 − 2(ǫjτj)

n
)

n+ 1



236 EMRE ALKAN

holds. Feeding (5.11) and (5.12) into (5.5), we deduce that

(5.13)

∫ 1

0

xP ′(x)

1 + P (x)2
dx

=
i

2

(

∞
∑

n=0

∑k

j=1(ǫjτj)
n+1 − 2(ǫjτj)

n − (ǫjτj)
n+1 + 2(ǫjτj)

n

n+ 1

)

.

For every 1 ≤ j ≤ k, ǫjτj is algebraic and we may define the constant polyno-

mials Pj(x) := 2− ǫjτj ∈ Q[x], where Q is the set of all algebraic numbers over
Q. Letting αj = ǫjτj , we may write
(5.14)

k
∑

j=1

(ǫjτj)
n+1 − 2(ǫjτj)

n − (ǫjτj)
n+1 + 2(ǫjτj)

n =

k
∑

j=1

Pj(n)α
n
j − Pj(n) αj

n.

Consider the exponential polynomial

g(x) =

k
∑

j=1

Pj(x)α
x
j − Pj(x) αj

x

with 2k terms. Then as a result of (5.3), (5.13) and (5.14), we have

(5.15)

Mk =
∞
∑

n=1

(−1)n−1

(

4kn−2k
2kn−k

)

(2n− 1)(4kn− 2k + 1)

= −

∫ 1

0

xP ′(x)

1 + P (x)2
dx = −

i

2

∞
∑

n=0

g(n)

n+ 1
.

Using (5.15), we may deduce as in the proof of Theorem 1 of [2] that Mk is
zero or transcendental. It is clear from (5.1) that Mk 6= 0 and Mk is therefore
transcendental. To deal with the wn measure of Mk, it is more convenient
to use a related quantity first introduced by Koksma [8] as an alternative to
Mahler’s, namely that

(5.16) w∗
n(ξ,H) := min{|ξ − α| : α ∈ Q ∩ R, dα ≤ n, H(α) ≤ H, α 6= ξ}

and

(5.17) w∗
n(ξ) := lim sup

H→∞

− log(Hw∗
n(ξ,H))

logH
,

where dα and H(α) are the degree and height of the minimal polynomial of
α over Z which is the integer polynomial vanishing at α with smallest de-
gree having no nontrivial common divisors of its coefficients and positive lead-
ing coefficient. Moreover, choosing an algebraic number β∗ with the property
w∗

n(Mk, H) = |Mk − β∗|, using (5.16), (5.17) and

− log |Mk − β∗|

h(β∗)
≤ ckd

2k+3
β∗

,
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where h(β∗) is the absolute logarithmic height of β∗ and ck > 0 is a constant
depending only on Mk, one derives the estimate

(5.18) wn(Mk) = Ok(n
2k+2)

for all n ≥ 1. It follows from (5.18) that Mk is not a U -number for all k. Finally,
to examine the structure of Mk as combinations, assume that

√

1− 4ǫj =

±(aj + ibj) with aj ≥ 0. Then the roots of x2 − x+ ǫj are

1 + aj

2
+ i

bj

2
,

1− aj

2
− i

bj

2
with

∣

∣

∣

∣

1 + aj

2
+ i

bj

2

∣

∣

∣

∣

≥

∣

∣

∣

∣

1− aj

2
− i

bj

2

∣

∣

∣

∣

so that

ωj =
1 + aj

2
+ i

bj

2
for 1 ≤ j ≤ k. There are k pairs of quadratic equations x2 − x + ǫj = 0 and
x2 − x+ ǫj = 0 and if

ωj =
1 + aj

2
+ i

bj

2
and τj =

1− aj

2
− i

bj

2

with bj 6= 0 (since ǫj are not real), are the roots of the former, then

ωj =
1 + aj

2
− i

bj

2
and τj =

1− aj

2
+ i

bj

2

are the roots of the latter. For the contribution of each such quadruple

(ωj , τj , ωj, τj)

of roots to the right hand side of (5.5), note that
(5.19)

∫

x

(

1

x− ωj

−
1

x− ωj

+
1

x− τj
−

1

x− τj

)

dx

= − i ℑ(ωj) log
(

x2 − 2R(ωj) + |ωj |
2
)

− 2i R(ωj) arctan

(

x−R(ωj)

ℑ(ωj)

)

.

As a result of (5.5) and (5.19), we see that

(5.20)

Mk = −

∫ 1

0

xP ′(x)

1 + P (x)2
dx

= −

k
∑

j=1

bj

2
log

(

(1− aj)
2 + b2j

(1 + aj)2 + b2j

)

+ aj

(

arctan

(

1− aj

bj

)

+ arctan

(

1 + aj

bj

))

.

By assumption,
√

1− 4ǫj = ±(aj + ibj),
√

1− 4ǫj = ±(aj − ibj) are in F .
Obviously, i is also in F . Consequently, aj , bj are both in F . Since (aj +
ibj)

2 = 1− 4ǫj and ǫj is not real, aj , bj indeed belong to F×. Observe that the
logarithmic terms in (5.20) are all nonvanishing. To verify the nonvanishing
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also for the terms involving the arctangent, assume for a contradiction that

aj = 1 for some j. Then ωj = 1 + i
bj
2

and τj = −i
bj
2
. Thus we have

b2j

4
− i

bj

2
= ωjτj = ǫj.

Hence t = −
bj
2
satisfies t(t+i) = ǫj. Taking modulus, we see that t2(t2+1) = 1

and this gives |t| =

√√
5−1
2

. One can similarly show that ωj = 1 − i
bj
2

and

τj = i
bj
2

give

b2j

4
+ i

bj

2
= ǫj

and this time t =
bj
2

satisfies t(t + i) = ǫj with |t| =

√√
5−1
2

. As bj or −bj is

positive, ǫj 6= i is not real and is of the form

ǫj = e
πi
2k

+ 2πmi
k

for some integer m, there exists an integer 1 ≤ r < k satisfying

(5.21) cos
(rπ

2k

)

=

√
5− 1

2
, sin

(rπ

2k

)

=

√√
5− 1

2
.

It follows from (5.21) that

wd = e
rπi
2k ∈ Q



i,

√√
5− 1

2



 ,

where wd is a primitive dth root of unity for some d dividing 4k. Note that

(5.22)



Q



i,

√√
5− 1

2



 : Q



 = 8 and [Q(wd) : Q] = φ(d),

where φ(d) is Euler’s totient function. Since Q(wd) is a subfield, we see from
(5.22) that φ(d) is a divisor of 8 and a complete list of possibilities for d is

(5.23) d ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30}.

Using (5.21), one calculates the argument of wd to be 0.90455 · · · in radians
and it is easy to check that no positive integer power of a primitive dth root
of unity, where d is as in (5.23), can coincide with this number in terms of
their arguments. This contradiction shows that aj 6= 1 for all j. (5.20) gives
that Mk can be written as an F×-linear combination of k logarithms and 2k
arctangents of numbers that are also in F×, where the logarithmic terms are
all nonvanishing. To complete the proof, let us take k = 1, working with the
equations x2 − x+ i = 0 and x2 − x− i = 0, one finds that

a1 =

√

1 +
√
17

2
, b1 = −

√

√
17− 1

2
.
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Combining the two arctangent terms appearing in M1 and simplifying, one cal-
culates λ as in the statement of the theorem. Furthermore, λ is transcendental
but not a U -number with wn(λ) = O(n4) for n ≥ 1.

6. Proof of Theorem 2

Let αj and βj be positive algebraic numbers for 1 ≤ j ≤ r, where βj are
distinct. Then note that

(6.1)

Sr =

r
∑

j=1

αj arctanβj =
∑

1≤j≤s
βj>1

αj arctanβj +
∑

s+1≤j≤r
0<βj≤1

αj arctanβj

=
s
∑

j=1

αj

(π

2
− arctanλj

)

+
∑

s+1≤j≤r
0<βj≤1

αj arctanβj ,

where λj = 1/βj. If s = 0 in (6.1), then by our convention 0 < βj ≤ 1 for all
1 ≤ j ≤ r and in this case, we may write

(6.2) arctanβj = −
i

2
log(1 + iβj)−

i

2
log

(

1

1− iβj

)

,

where the complex logarithm has its principal value. Moreover, we have

(6.3) log(1 + iβj) =

∞
∑

n=0

(−1)n(iβj)
n+1

n+ 1

and
(6.4)

log

(

1

1− iβj

)

= log

(

1 +
iβj − β2

j

1 + β2
j

)

=

∞
∑

n=0

(−1)niβj((1 + iβj)/(1 + β2
j ))((iβj − β2

j )/(1 + β2
j ))

n

n+ 1

as
∣

∣

∣

∣

∣

iβj − β2
j

1 + β2
j

∣

∣

∣

∣

∣

=
βj

√

1 + β2
j

< 1.

Next let

(6.5) Tm =

m
∑

j=1

µj log γj .

For each algebraic number γj > 1, define a new algebraic number ϕj as follows.
If 1 < γj ≤ 2, then take ϕj = γj − 1. If γj > 2, then take ϕj = 1

γj
− 1. Note
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that in both cases −1 < ϕj ≤ 1 and ± log(1+ϕj) = log γj holds. Here the plus
sign is chosen only when 1 < γj ≤ 2. It follows that

(6.6) log γj = ± log(1 + ϕj) = ±

∞
∑

n=0

(−ϕj)
n+1

n+ 1
=

∞
∑

n=0

sj(−ϕj)
n+1

n+ 1

for any 1 ≤ j ≤ m, where sj ∈ {−1, 1} determines the sign. Assembling now
(6.1)–(6.6), the representation
(6.7)
Kr,m=Sr + Tm

=

∞
∑

n=0

∑
r
j=1

αjβj

2
(−iβj)

n+
αjβj(1+iβj)

2(1+β2

j
)

((−iβj+β2

j )/(1+β2

j ))
n+

∑
m
j=1

sjµj(−ϕj)(−ϕj)
n

n+1

follows. Define the constant polynomials

(6.8) Pj(x) :=











αjβj

2
, 1 ≤ j ≤ r

αj−rβj−r(1+iβj−r)

2(1+β2

j−r
)

, r + 1 ≤ j ≤ 2r

−sj−2rµj−2rϕj−2r , 2r + 1 ≤ j ≤ 2r +m,

where each case in (6.8) is clearly an algebraic number. Also define the algebraic
numbers

(6.9) ωj :=















−iβj, 1 ≤ j ≤ r
−iβj−r+β2

j−r

1+β2

j−r

r + 1 ≤ j ≤ 2r

−ϕj−2r , 2r + 1 ≤ j ≤ 2r +m,

and the exponential polynomial

(6.10) g(x) :=
2r+m
∑

j=1

Pj(x)ω
x
j .

Gathering (6.7)–(6.10), we see that

(6.11) 0 < Kr,m =

∞
∑

n=0

g(n)

n+ 1

and Kr,m is forced to be transcendental by (6.11). Note that g(x) has 2r +m

terms so that choosing an algebraic number κ in Koksma’s formulation and
using the inequality

− log |Kr,m − κ|

h(κ)
≤ cαj ,βj,µj ,γj

d2r+m+3
κ

with a suitable constant cαj ,βj,µj ,γj
> 0 depending only on the algebraic num-

bers defining Kr,m, one arrives at the estimate

(6.12) wn(Kr,m) = Oαj ,βj ,µj ,γj
(n2r+m+2)
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when no βj > 1. Thus Kr,m is not a U -number. If s ≥ 1 and none of βj = 1,
then we may similarly represent Kr,m using an exponential polynomial with
2r +m+ 2 terms as

π

4
= arctan 1 = −

i

2
log(1 + i)−

i

2
log

(

1

1− i

)

.

In this case, Kr,m is transcendental but not a U -number, satisfying

wn(Kr,m) = Oαj ,βj,µj ,γj
(n2r+m+4).

If s ≥ 1 and exactly one βj = 1, then the two logarithmic terms arising from π
2

can be combined with the term involving arctanβj = arctan 1 and one again
obtains (6.12). Next consider

L1 = α arctanβ + logµ,

where α 6= 0, β 6= 0, µ 6= 1, µ > 0 are real algebraic numbers. Let us see
that L1 6= 0. For a contradiction, assume that L1 = 0. Putting λ1 = arctanβ
and λ2 = log µ, we have αλ1 + λ2 = 0. It follows that sinλ1 = β cosλ1

and eλ2 = µ. But eλ2 = e−αλ1 is one of the values of (eiλ1 )iα. Note that
iα /∈ Q. Since β is algebraic and sin2 λ1 + cos2 λ1 = 1, it is easy to see that
sinλ1 and cosλ1 are both algebraic. Consequently, eiλ1 is algebraic. As µ is
algebraic, one contradicts the Gelfond-Schneider theorem (see p. 119 of [4])
unless eiλ1 = 1 and in that case β = tanλ1 = 0, another contradiction. Thus
L1 is transcendental. When |β| ≤ 1, we may write

arctanβ = −
i

2
log(1 + iβ)−

i

2
log

(

1

1− iβ

)

and it follows as above that L1 is not a U -number with wn(L1) = Oα,β,µ(n
5).

If β > 1, then using arctanβ = π
2
− arctanλ with λ = 1/β and writing

both of π
2
and arctanλ as a combination of a pair of logarithms, we see that

wn(L1) = Oα,β,µ(n
7). If β < −1, then using arctanβ = −π

2
+ arctan(−1/β),

one similarly obtains wn(L1) = Oα,β,µ(n
7). Finally, if α 6= 0 and β /∈ Q are

real algebraic numbers, then

L2 = βπ + arctanα 6= 0

since otherwise βπ + arctanα = 0 and λ = arctanα give that tanλ = α,
λ = −βπ. Similarly as above, we see that eiλ = e−iβπ is algebraic. This is a
contradiction unless β is rational contrary to our assumption. It follows that
L2 is transcendental. Writing π and arctanα in terms of pairs of logarithms
and distinguishing the cases |α| ≤ 1, |α| > 1, we easily deduce that L2 is not a
U -number with wn(L2) = Oα,β(n

6). This completes the proof.
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