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Abstract
We propose a semiparametric inference for a generalized varying coefficient partially linear model(VCPLM)

for negative binomial data. The VCPLM is useful to model real data in that varying coefficients are a special type
of interaction between explanatory variables and partially linear models fit both parametric and nonparametric
terms. The negative binomial distribution often arise in modelling count data which usually are overdispersed.
The varying coefficient function estimators and regression parameters in generalized VCPLM are obtained by for-
mulating a penalized likelihood through smoothing splines for negative binomial data when the shape parameter
is known. The performance of the proposed method is then evaluated by simulations.

Keywords: Negative binomial, penalized likelihood, semiparametric, smoothing parameter, smoothing
spline, varying coefficients.

1. Introduction

A classical linear regression approach has assumed that the explanatory variables are linearly associated
with the response and the fitted model has been interpreted by regression parameter estimates. However,
the ordinary linear regression model was often found to be too simple to fit to interpret the various types of
data. An alternative method is to use a nonparametric regression approach that can to relieve the paramet-
ric restriction by allowing the estimator to be infinite-dimensional. Recently, a semiparametric approach
(which involves both linear terms and nonparametric function terms) has been studied in a constructive
way to avoid the ‘curse of dimensionality’. Such structured models include generalized additive models
and varying coefficient models (Hastie and Tibshirani, 1993).

The generalized varying coefficient partially linear model(VCPLM) is one of the semiparametric mod-
els in which some of coefficients are varying and others are constant. The VCPLM includes many simpler
models; classical nonparametric models, partially linear models, generalized additive models, and varying
coefficient models. The details can be found at Hastie and Tibshirani (1993), Fan and Zhang (1999), Fan
et al. (2003), Fan and Huang (2005), Senturk and Muller (2008) and references therein.

Previous studies on semiparametric models have focused mostly on Gaussian data (Zhang et al., 2002;
Xia et al., 2004; Fan and Huang 2005; Ahmad et al., 2010) and binomial or Poisson data (Lu, 2008).
The negative binomial distribution is widely used for modelling the discrete data where it is believed that
the variance of the response variable is larger than its mean; subsequently, it is often considered as an
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overdispersed Poisson distribution. In this paper, we propose an inference for a generalized VCPLM for
negative binomial data.

The paper is organized as follows. Section 2 describes the penalized likelihood method for negative
binomial data in generalized VCPLM. Section 3 presents the computation method and its algorithm. The
smoothing parameter selection method is described in Section 4. Section 5 reports the numerical results of
simulated examples and conclusions are drawn in Section 6.

2. Penalized Likelihood

The penalized likelihood estimates f in the ordinary nonparametric estimation is a minimizer of a
penalized likelihood functional,

1
n

n∑
i=1

l(η(ui)|yi) + λJ(η), (2.1)

where the first term is the minus log likelihood, J(η) is a roughness penalty functional. The smoothing
parameter λ controls the trade-off between the lack of fit and the roughness of η(u) and thus plays an
important role to determine the performance of the estimator. For y be a response from negative binomial
distribution describing the number of failures before the αth success in Bernoulli trials with a success
probability p, µ = E(y) = α(1 − p)/p and Var(y) = α(1 − p)/p2. The minus log likelihood is l(pi|yi) =
logΓ(α)− logΓ(α+ yi)− α log(pi)− yi log(1− pi)+C(yi), where α is the known shape parameter and C(y)
is a term involving only y. For fitting the negative binomial model for y in a regression setting there are
several link functions available and a common approach to negative binomial regression model is to take
log link log(µ) = f (Thurston et al., 2000). In this paper, we take a logit link log(p/(1−p)) = η as in logistic
regression and focus on estimating η. For given α, l(η(ui)|yi) = (α+yi) log(1+exp(η(ui)))−αη(ui)+D(α, yi),
where D(α, y) is a term involving both α and y.

The nonparametric estimate of η is obtained by minimizing the penalized likelihood functional in (2.1)
in a space H ⊆ { f : J( f ) < ∞} of functions on the domain T . In fact, the minimizer of (2.1) is in infinite
dimensional space H ⊆ { f : J( f ) < ∞}. Specifically, the minimizer of (2.1) lies in H = NJ ⊕ HJ ,
where NJ = { f : J( f ) = 0} be the null space of J(η) and the space HJ is an reproducing kernel Hilbert
space(RKHS) with J(η) as the square norm. Note that a spaceH in which the evaluation functional [x] f =
f (x) is continuous is called an RKHS possessing a reproducing kernel(RK) R(· , ·), a non-negative definite
function satisfying ⟨R(x, ·), f (·)⟩ = f (x), ∀η ∈ H , where ⟨· , ·⟩ is the inner product in H . Letting J( f ) =∫ 1

0 f̈ 2dx on T = [0, 1], one gets the popular (smoothing) cubic splines with NJ = span{1, k1(t)}, where

k1(t) = t − 0.5. In HJ = { f :
∫ 1

0 f dt =
∫ 1

0 ḟ dt = 0, J( f ) < ∞} with J( f ) as the square norm, one has the
RK RJ(t1, t2) = k2(t1)k2(t2)− k4(t1 − t2), where kν = Bν/ν! are scaled Bernoulli polynomials (see Gu, 2002).

Estimating η in infinite dimensional spaceH is challenging in practice. As remedy for this problem, a
data-adaptive lower-dimensional approximation can be used in penalized likelihood methods. Gu and Kim
(2002) showed for regression that the minimizer of the penalized likelihood functional inH shared the same
convergence rates as one in the lower dimensional function spaceHq = NJ ⊕ span{RJ(w j, ·), j = 1, . . . , q},
where {w j} are random subsets of {ui, i = 1, . . . ,N}, as long as q ≍ n2/(vr+1)+ϵ , for some v ∈ [1, 2], r > 1,
ϵ > 0 is arbitrary. Here, v represents how smooth the true function is and v = 2 is used under the assumption
that the true function is smooth enough. For the cubic spline, r = 4 is used.
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The generalized VCPLM is

logit(p) = η(u)T x + βT z, (2.2)

where p = p(u, x, z), (xT , zT ) ∈ Rp1 × Rp2 , η(u) = (η1(u), . . . , ηp1 (u))T is a p1-dimensional vector of smooth
functions of covariates u, and β = (β1, . . . , βp2 )T is a vector of unknown parameters. The varying coefficient
function η’s can be interpreted the same way as the parameters for interactions in a classical multiple
regression. In this paper, we are interested in estimating both η and β in (2.2).

3. Computation

In this study, we propose an estimating algorithm for both varying coefficient functions and regression
parameters iteratively. Assume that the shape parameter is known. The full algorithm consists of two al-
ternating algorithms; an algorithm for estimation of η and β and a backfitting-type algorithm for estimation
of multiple η’s. The alternating algorithm for η and β is as follows. (i) First, get a starting value for β.
(ii) Given β, compute η̂ by using weighted penalized least squares in the lower-dimensional approximating
space Hq. (iii) Using η̂, get the estimates β̂ = argmaxβl(β|η̂), where ł(β|η̂) is log likelihood for β given η̂.
Repeat steps (ii) and (iii) until convergence.

More specifically, penalized likelihood for VCPLM is

1
n

n∑
i=1

l
(
η(ui)T xi + β

T zi

)
+ λJ(η). (3.1)

Assume that β is given. The estimating algorithm of η consists of two nested loops, which the inner
loop computes the minimizer of the penalized likelihood for fixed smoothing parameters and the outer loop
computes the optimal smoothing parameters. For fixed smoothing parameters, (3.1) is strictly convex and
thus the estimator of η can be computed by Newton iteration. Since the profile likelihood l(η|y) ∝ α(ηT x +
βT z)−(α+y) log(1+eη

T x+βT z), ũi = ∂l/∂η|η̃(ui) = (α+yi)pixi−αxi and w̃i = ∂
2/∂η2|η̃(ui) = (α+yi)pi(1− pi)x2

i ,
where pi = exp(η̂T x + βT z)/(1 + exp(η̂T x + βT z)). The quadratic approximation of l(η|y) at η̃ yields the
weighted penalized least squares

1
n

n∑
i=1

w̃i (ỹi − η(ui))2 + λJ(η), (3.2)

where ỹi = η̃(ui) − ũi/w̃i.
Incorporating the expression of varying coefficients η in Hq and substituting into (3.2), one calculate

the minimizer of (3.1) with respect to η through the minimization of the weighted penalized least square
functional. Then the resulting normal equation for the solution can be solved by a Cholesky decomposition
followed by forward and backward substitutions. Note that for the dimension ofHq, we take Kim and Gu
(2004)’s suggestion; set q = 10n2/9.

If there are multiple varying coefficient functions η’s to be estimated, a backfitting-type algorithm is
used as follows. (i) Let η̂ j be some starting values, for j = 1, . . . , p1. (ii) For j, calculate η j by using profile
penalized likelihood functional given ηl, l , j, j = 1, . . . , p1. (iii) Repeat the step (ii) until convergence.
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Figure 1: The MSE losses for varying coefficients estimates under VCM. First row: each pairs of boxplots of
two methods is for n = 30, 50, 100, 200, and 500 from left to right. Second row: boxplots for n = 200 (fat)
and n = 500 (thin) with better resolution. Left column: plots for η1. Right column: plots for η2. SS stands for

smoothing splines (our method) and GAM stands for gam in mgcv R package.

4. Smoothing Parameter Selection

The performance of the estimators ηλ of η is determined by the selected smoothing parameters in
smoothing splines. Several methods to select the optimal smoothing parameters have been used in the
literature as follows: the generalized cross-validation score (Wahba, 1985), the indirect cross-validation
score of (Gu, 2002)(also called performance-oriented iteration), and the direct cross-validation score of
Gu and Xiang (2001) and Xiang and Wahba (1996). We adapt the score of Gu and Xiang (2001), which
is a modified version of the score of Xiang and Wahba (1996). Specifically, the alternative generalized
approximate cross-validation(AGACV) in penalized likelihood regression settings can be derived based on
the Kullback-Leibler distance between the true function η and the minimizer ηλ of the penalized likelihood
functional as follows:

V(λ) =
1
n

n∑
i=1

l
(
η(ui)T

λ xi + β
T zi

)
+

tr
(
AwW−1

)
n − tr Aw

1
n

n∑
i=1

yi piũi, (4.1)

here Aw is the smoothing matrix.
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Figure 2: The MSE losses for varying coefficients estimates under VCPLM. First row: each pairs of boxplots
of two methods is for n = 30, 50, 100, 200, and 500 from left to right. Second row: boxplots for n = 200 (fat)
and n = 500 (thin) with better resolution. Left column: plots for η1. Right column: plots for η2. SS stands for

smoothing splines (our method) and GAM stands for gam in mgcv R package.

5. Simulations

In this section, we conducted two sets of simulations to evaluate the performances of the proposed
methods for negative binomial data. Assume that the shape parameter is known. Two sets of simulations
were conducted; for the model with varying coefficients only (varying coefficient models; VCM) and the
varying coefficients model with partially linear terms(VCPLM). For VCM, the data are generated from the
negative binomial with η1(u⟨1⟩) = log(2 sin(2πu⟨1⟩)+u2

⟨1⟩+2.1), η2(u⟨2⟩) = −(u⟨2⟩−0.5)2, and βT = (0, . . . , 0)
in (2.2), and the shape parameter α = 2. The covariates u⟨1⟩, u⟨2⟩ are generated from the uniform distribution
on [0, 1] and x⟨1⟩, x⟨2⟩ are generated from the normal distribution with mean 1 and standard deviation 0.2.
For sample size n = 30, 50, 100, 200 and 500, 100 replicates were generated and cubic smoothing splines
for varying coefficient functions. The performance of the proposed method was evaluated by mean squared
error(MSE) for varying coefficient function estimates. Note that the computations of varying coefficient
functions for n = 30 and n = 50 were conducted in Hn as the sample sizes were relatively small and the
effect of the lower-dimensional approximation may be minimal.

The performances of the proposed method were compared with the generalized additive model(GAM)
of Wood (2008) and Wood (2011) for negative binomial estimation. Wood (2008) and Wood (2011)’s meth-
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Figure 3: The MSE losses for the estimates of µ. First row: each pairs of boxplots of two methods is for n = 30,
50, 100, 200, and 500 from left to right. Second row: boxplots for n = 200 (fat) and n = 500 (thin) with better
resolution. Left column: plots under VCM. Right column: plots under VCPLM. SS stands for smoothing splines

(our method) and GAM stands for gam in mgcv R package.

ods were implemented via gam function in mgcv R package. For comparison, we used his REML score
for smoothing parameter selection which Wood (2011) derived for restricted maximum likelihood(REML)
based on direct optimization of GCV for generalized linear model. For negative binomial data, Wood
(2011) used log link. Note that the gam function in the package only computed the estimates of ηi(ui)xi

and we had to divide the estimates by xi to get the estimates of varying coefficient functions ηi(ui) for
comparison.

For VCPLM, the data are generated from the negative binomial with the same test functions η1(u⟨1⟩),
η2(u⟨2⟩), and β1 = 1, β2 = −1 in (2.2) and z⟨1⟩, z⟨2⟩ are generated from the normal distribution with with
mean 1 and standard deviation 0.2. The performances of the proposed method for the VCM and for the
VCPLM respectively and comparisons with GAM of Wood (2011) were summarized in Figure 1∼Figure 5.
Figure 1 and Figure 2 showed boxplots of MSE to show the performances of the varying coefficient function
estimators for each sample size n under VCM and VCPLM respectively. The box width in boxplots in the
first row in both figures gradually decreased as n increased. Our method estimated both η1 and η2 slightly
better than GAM in terms of smaller ranges even though there were some larger outliers in our method.
Figure 3 showed boxplots of MSEs of the mean functions. In comparing the mean function estimates, the
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Figure 4: Performance of regression parameter β estimates. First row: each pairs of boxplots of two methods
is for n = 30, 50, 100, 200, and 500 from left to right. Second row: boxplots for n = 200 (fat) and n = 500 (thin)
with better resolution. Left column: plots for β1. Right column: plots for β2. SS stands for smoothing splines

(our method) and GAM stands for gam in mgcv R package.

MSE differences of two methods were larger than the varying coefficient function estimates because of the
different ranges of the target functions being estimated. For small sample sizes, say n = 30 and n = 50, our
method was no better than GAM. However, the performance of our method became better as the sample
size increased. It also confirmed that our method performed equivalently good as GAM for large sample
sizes. Figure 4 showed boxplots of regression parameter β estimates and two methods showed similar
performances. Figure 5 showed the varying coefficient function estimates obtained from a sample data
with n = 200 using our method and GAM of Wood (2011) under the VCM and the VCPLM respectively.
It also confirmed that our method performed better to estimate the varying coefficient functions in both
VCM and VCPLM.

6. Conclusions

In this paper, we proposed a semiparametric estimation method for varying coefficient partially linear
models for negative binomial data through smoothing spline approach. The performance of the proposed
method was then compared with a well-known existing semiparametric method.

When the shape parameter is unknown, the distribution no longer belongs to exponential family and a
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Figure 5: Each varying coefficient function estimates from a sample with n = 200. The solid line is the true
coefficient functions, the dashed line is our estimates and the dotted line is GAM estimates for η1 (first row) and

η2 (second row) under VCM (left column) and VCPLM (right column).

different approach on the estimation of varying coefficient functions and regression parameters along with
the shape parameter estimation is needed. The algorithmic developments in this case are under way.
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