• Title/Summary/Keyword: and Kalman Filtering

Search Result 324, Processing Time 0.028 seconds

A Study on the Effect of the Machine State Considering Human Skillfulness (Kalman Filtering Approach) (작업자의 숙련도가 기계상태에 미치는 영향에 관한 연구 (최적 제어 이론(Kalman Filtering) 적용 중심으로))

  • 윤상원;갈원모;신용백
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.4
    • /
    • pp.125-131
    • /
    • 1994
  • This paper proposes a dynamic recursive model with the effect analysis of machine state considering human factor(human skillfulness) In a single lot man-machine production system. This model obtained using Kalman Filtering Algorithm Is based on input state, output state, machine state. For sensitivity analysis, this model constructed is examined according to the impact of human skillfulness with computer simulation. The model studied in this paper has a great advance from the point of view a combination of three factors( human engineering, dynamic control theory, quality control ) and can also be extended in several applications.

  • PDF

Touch Noise Reduction using Kalman Filter and Pre-emphasis (프리엠퍼시스와 칼만 필터를 이용한 터치 잡음 제거)

  • Yu, Seung-wan;Song, Byung Cheol
    • Journal of Broadcast Engineering
    • /
    • v.20 no.4
    • /
    • pp.568-579
    • /
    • 2015
  • Recently, mobile devices with touch display panel are widely used. Accuracy and reaction speed of touch signal are very important in touch devices. Therefore, we need to develop an effective algorithm to reduce touch noise quickly and accurately. This paper proposes a touch noise reduction algorithm using Kalman filtering in consideration of signal motion. First, a specific pre-emphasis processing is applied to an input signal so as to maximize the effect of Kalman filtering. In other words, a pure signal in the touch signal increases but noise in the touch signal decreases. Next, motion of the signal is detected. Motion estimation is performed only if motion is detected. If we detect motion by using the only neighborhood of the signal, we can reduce about 75% of the computation in comparison with examining the entire area. Finally, Kalman filtering using the previous state of current signal is performed. Experimental results show that the proposed algorithm suppresses touch noise sufficiently without degradation of the pure signal

A Study on the Inter-Carrier Interference Cancelation for DMT Systems (DMT 시스템에서 반송파간 간섭제거에 대한 연구)

  • Chung, Kil-Soo;Lee, Won-Seok;Kang, Hee-Hoon
    • 전자공학회논문지 IE
    • /
    • v.45 no.1
    • /
    • pp.24-30
    • /
    • 2008
  • In this paper, Digital MultiTone(DMT) is an emerging multi-carrier modulation scheme, which has been adopted for VDSL(Very high speed Digital Subscribe Line). A problem of DMT is its sensitivity to frequency offset between the transmitted and received carrier frequencies. This frequency offset introduces inter-carrier interference(ICI) in the DMT symbol. This paper is proposed an ICI cancelation scheme using Kalman Filtering. The performance of the proposed method is compared with conventional methods in terms of bit error rate performance, bandwidth efficiency, and computational complexity. Through simulations, it is shown that for high values of the frequency offset and for higher order modulation schemes, the EKF(Enhanced Kalman Filtering) method perform better than the others.

High-degree Cubature Kalman Filtering Approach for GPS Aided In-Flight Alignment of SDINS

  • Shin, Hyun-choel;Yu, Haesung;Park, Heung-won
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.4
    • /
    • pp.181-186
    • /
    • 2015
  • A High-degree Cubature Kalman Filter (CKF) is proposed to deal with the Strapdown Inertial Navigation System (SDINS) alignment problem. In-flight Alignment (IFA) is an effective method to compensate for attitude errors of the navigation system. While providing precise attitude error compensation, however, the external source aided alignment often creates a nonlinear filtering problem caused by a large misalignment angle. Introduced recently, Cubature Kalman Filter is a suitable technique for various nonlinear problems. In this paper, a higher degree CKF is applied to this accuracy-is-everything SDINS IFA problem. The simulation results show that the proposed technique outperformed a traditional nonlinear filter in terms of precision and alignment time.

Perpendicular Magnetic Recording Channel Equalization Based on Gaussian Sum Approximation of Kalman Filters (Gaussian Sum Approximation을 기반으로 한 Kalman filter의 수직자기 채널 등화기법)

  • Kong, Gyu-Yeol;Cho, Hyun-Min;Choi, Soo-Yong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.297-298
    • /
    • 2008
  • A new equalization method for perpendicular magnetic recording channels is proposed. The proposed equalizer incorporates the Gaussian sum approximation into a Kalman filtering framework to mitigate inter-symbol interference in perpendicular magnetic recording systems. The proposed equalizer consists of a bank of linear equalizers using the Kalman filtering algorithm and its output is obtained by combining the outputs of linear equalizers through the Gaussian sum approximation.

  • PDF

Performance Degradation Due to Particle Impoverishment in Particle Filtering

  • Lim, Jaechan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2107-2113
    • /
    • 2014
  • Particle filtering (PF) has shown its outperforming results compared to that of classical Kalman filtering (KF), particularly for highly nonlinear problems. However, PF may not be universally superior to the extended KF (EKF) although the case (i.e. an example that the EKF outperforms PF) is seldom reported in the literature. Particularly, PF approaches show degraded performance for problems where the state noise is very small or zero. This is because particles become identical within a few iterations, which is so called particle impoverishment (PI) phenomenon; consequently, no matter how many particles are employed, we do not have particle diversity regardless of if the impoverished particle is close to the true state value or not. In this paper, we investigate this PI phenomenon, and show an example problem where a classical KF approach outperforms PF approaches in terms of mean squared error (MSE) criterion. Furthermore, we compare the processing speed of the EKF and PF approaches, and show the better speed performance of classical EKF approaches. Therefore, PF approaches may not be always better option than the classical EKF for nonlinear problems. Specifically, we show the outperforming result of unscented Kalman filter compared to that of PF approaches (which are shown in Fig. 7(c) for processing speed performance, and Fig. 6 for MSE performance in the paper).

Marine Object Detection Based on Kalman Filtering

  • Hwang, Jae-Jeong;Pak, Sang-Hyon;Park, Gil-Yang
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.347-352
    • /
    • 2011
  • In this paper, although Radar has been used for a long time, integrated scheme with visual camera is an efficient way to enhance marine surveillance system. Camera image is focused by radar information but it is easy to be fallen into inaccurate operation due to environmental noises. We have proposed a method to filter the noises by moving average filter and Kalman filter. It is proved that Kalman filtered results preserves linearity while the former includes larger variance.

Design of Suboptimal Robust Kalman Filter via Linear Matrix Inequality (선형 행렬 부등식을 이용한 준최적 강인 칼만 필터의 설계)

  • Jin, Seung-Hee;Yoon, Tae-Sung;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.560-570
    • /
    • 1999
  • This paper formulates the suboptimal robust Kalman filtering problem into two coupled Linear Matrix Inequality (LMI) problems by applying Lyapunov theory to the augmented system which is composed of the state equation in the uncertain linear system and the estimation error dynamics. This formulations not only provide the sufficient conditions for the existence of the desired filter, but also construct the suboptimal robust Kalman filter. The proposed filter can guarantee the optimized upper bound of the estimation error variance for uncertain systems with parametric uncertainties in both the state and measurement matrices. In addition, this paper shows how the problem of finding the minimizing solution subject to Quadratic Matrix Inequality (QMI), which cannot be easily transformed into LMI using the usual Schur complement formula, can be successfully modified into a generic LMI problem.

  • PDF

Design of target state estimator and predictor using multiple model method (다중모델기법을 이용한 표적 상태추정 및 예측기 설계연구)

  • Jung, Sang-Geun;Lee, Sang-Gook;Yoo, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.478-481
    • /
    • 1996
  • Tracking a target of versatile maneuver recently demands a stable adaptation of tracker, and the multiple model techniques are being developed because of its ability to produce useful information of target maneuver. This paper presents the way to apply the multiple model method in a moving-target and moving-platform scenario, and the estimation and prediction results better than those of single Kalman filter.

  • PDF

A Neural Network and Kalman Filter Hybrid Approach for GPS/INS Integration

  • Wang, Jianguo Jack;Wang, Jinling;Sinclair, David;Watts, Leo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.277-282
    • /
    • 2006
  • It is well known that Kalman filtering is an optimal real-time data fusion method for GPS/INS integration. However, it has some limitations in terms of stability, adaptability and observability. A Kalman filter can perform optimally only when its dynamic model is correctly defined and the noise statistics for the measurement and process are completely known. It is found that estimated Kalman filter states could be influenced by several factors, including vehicle dynamic variations, filter tuning results, and environment changes, etc., which are difficult to model. Neural networks can map input-output relationships without apriori knowledge about them; hence a proper designed neural network is capable of learning and extracting these complex relationships with enough training. This paper presents a GPS/INS integrated system that combines Kalman filtering and neural network algorithms to improve navigation solutions during GPS outages. An Extended Kalman filter estimates INS measurement errors, plus position, velocity and attitude errors etc. Kalman filter states, and gives precise navigation solutions while GPS signals are available. At the same time, a multi-layer neural network is trained to map the vehicle dynamics with corresponding Kalman filter states, at the same rate of measurement update. After the output of the neural network meets a similarity threshold, it can be used to correct INS measurements when no GPS measurements are available. Selecting suitable inputs and outputs of the neural network is critical for this hybrid method. Detailed analysis unveils that some Kalman filter states are highly correlated with vehicle dynamic variations. The filter states that heavily impact system navigation solutions are selected as the neural network outputs. The principle of this hybrid method and the neural network design are presented. Field test data are processed to evaluate the performance of the proposed method.

  • PDF