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Abstract 
 

It is well known that Kalman filtering is an optimal real-time data fusion method for GPS/INS integration. However, 
it has some limitations in terms of stability, adaptability and observability. A Kalman filter can perform optimally 
only when its dynamic model is correctly defined and the noise statistics for the measurement and process are 
completely known. It is found that estimated Kalman filter states could be influenced by several factors, including 
vehicle dynamic variations, filter tuning results, and environment changes, etc., which are difficult to model. Neural 
networks can map input-output relationships without apriori knowledge about them; hence a proper designed neural 
network is capable of learning and extracting these complex relationships with enough training. This paper presents a 
GPS/INS integrated system that combines Kalman filtering and neural network algorithms to improve navigation 
solutions during GPS outages. An Extended Kalman filter estimates INS measurement errors, plus position, velocity 
and attitude errors etc. Kalman filter states, and gives precise navigation solutions while GPS signals are available. At 
the same time, a multi-layer neural network is trained to map the vehicle dynamics with corresponding Kalman filter 
states, at the same rate of measurement update. After the output of the neural network meets a similarity threshold, it 
can be used to correct INS measurements when no GPS measurements are available. Selecting suitable inputs and 
outputs of the neural network is critical for this hybrid method. Detailed analysis unveils that some Kalman filter 
states are highly correlated with vehicle dynamic variations. The filter states that heavily impact system navigation 
solutions are selected as the neural network outputs. The principle of this hybrid method and the neural network 
design are presented. Field test data are processed to evaluate the performance of the proposed method. 
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1. Introduction 

 
GPS/INS integrated systems have been becoming a popular 

tool to directly georeference mobile mapping vehicles. INS 
measures vehicles attitude, velocity and position at a high data 
rate, with accurate positioning correction provided by DGPS at a 
relatively low data rate, using Kalman filter (KF) or other real-
time data fusion method. The performance of an integrated 
system depends not only on the quality of each subsystem but 
also on the data fusion method. As the predictions of a KF 
diverge without filter measurement update with GPS, the 
performance of a GPS/INS integrated system degrades rapidly if 
GPS signals are unavailable. It is a challenging issue to develop 
optimal real-time data fusion methods for GPS/INS integration 
that can improve system performance, especially during GPS 
outages.  

 
KF is the optimal filter for modeled processes, and the core of 

most INS/GPS integrated systems implemented to date[1]. It can 
optimally estimate the position, velocity and attitude of a moving 
vehicle using precise GPS measurements to update the filter 
states. KF is computationally efficient, which is especially useful 
for real-time applications. On the other hand, KF has some 
shortcomings. The system dynamic models need to be 
completely known. But in practice few systems can meet such a 
requirement. Another problem with KF is its drift in prediction 
mode when GPS signals are lost. In most cases a first order 
Gauss Markov assumption is made which means that the current 
estimates depend solely on the previous estimates. So if the 
previous estimates have any errors, these errors will be 

propagated into the current estimates and will be summed with 
new errors to accumulate an even larger error [2]. This is an 
inherent disadvantage of Kalman filter predictions.  

 
Neural networks (NNs) have been proposed as a multi-sensor 

integrator [3, 4]. It is well known that NNs are capable of 
adapting themselves to learn input-output relationships. This 
means that no initial dynamic or noise models need to be set as 
these are learned over time. NNs can also adapt to the changes of 
the system model or vehicle dynamic. At the same time, however, 
the NN approach also has some shortcomings. Its accuracy is not 
ideal and depends on the artificial experience. At current stage, 
Kalman Filter still remains at the forefront of INS/GPS 
integration.  

 
Combining KF with NN to circumvent their inherent 

shortcomings and improve overall performances of INS/GPS 
integrated systems is a potential solution. A NN aided adaptive 
extended KF (EKF) was proposed by Jwo and Huang [5]. A NN 
based approach for tuning KF was developed by Korniyenko et 
al [6]. NN and KF were combined together to bridge GPS 
outages [2]. NN model was used for de-noising MEMS-based 
inertial data [7].  

 
This paper presents a new hybrid method that improves the 

performance of an INS/GPS integrated system by employing NN 
to reduce the KF state drift during GPS outages. The KF states 
and their impact on system navigation solutions during GPS 
outages are investigated using field test data. The cross 
correlations between parameters representing vehicle dynamic 
variation and the KF error states are analyzed. The inputs and 



outputs of a NN are selected as the parameters representing 
vehicle dynamic variations and the KF error states that are highly 
correlated with the variation and have serious impact on the 
navigation solution. A multi-layer feed-forward back-propagation 
neural network is trained to map these input-output relationships 
at the same rate of KF measurement update. The NN is merged 
into an EKF for GPS/INS integration. The outputs of the trained 
NN are used to compensate KF state drifts and improve 
navigation solutions when no GPS measurements are available.  

 
This paper is organized as follows. Section 2 analyzes the 

role of each KF state in navigation solutions during the filter 
prediction, and canvasses cross-correlation between parameters 
representing the vehicle dynamic variation and the filter error 
states. The inputs and outputs of a NN are defined in Section 3. 
Pre-processing is needed for NN outputs to establish better input-
output relationships. Section 4 describes the design of the NN, 
and the combination of NN and EKF. Section 5 presents and 
discusses testing results, and the concluding remarks are given in 
Section 6. 

 
 

2. Analysis of KF States 
 
2.1 The role of KF states 

 
A tightly coupled EKF is applied for GPS/INS integration, 

which makes it possible to update the filter even with less than 
four GPS signals, and can provide better accuracy and is less 
sensitive to satellite dropouts than a loosely coupled one. The 
error states (instead of whole-value filter states) are chosen for 
the EKF. The complexity of the INS error model depends on the 
model for INS sensor measurement errors, as well as the gravity 
uncertainty [8].The EKF includes the following 24 states: 

 
T

Nav N E D N E D H P R[ r , r , r , v , v , v , , , ]δ δ δ δ δ δ δψ δψ δψ=x
T

INS bx by bz fx fy fz bx by bz[ , , , , , , , , ]ε ε ε= ∇ ∇ ∇ ∇ ∇ ∇x
T

Ant x y z[ , , ]η η η=x                         (1) 

xGrav N E D
Tg g g= [ , , ]δ δ δ   

 
where xNav, xIMU, xAnt and xGrav are the navigation error vector, 

the INU sensor measurement error vector, the GPS antenna to 
INS lever arm measurement error vector and gravity uncertainty, 
respectively. Subscript b stands for bias and subscript f stands for 
scaling factor. 

 
It is important to develop proper dynamic and stochastic 

models for the system errors as this is the key to understanding 
their effects on the navigation solution, and to estimate these 
errors using external measurements. The following complete 
terrestrial INS psi-angle error model is adopted in the system. 

 
 

     (2)
  

 
where δv, δr, and δψ are the velocity, position, and attitude 

error vectors respectively; ∇ is the accelerometer error vector; 
δg is the error in the computed gravity vector; and ε is the gyro 
drift vector.  

 
The strap-down INS navigation computation diagram is 

expressed in Figure 1. The item b
ibV∆  is delta velocity from 

accelerometers, b
ibθ∆  is the angular rates and b

nC  the direction 

cosine matrix from b-frame to n-frame. 
 

 
 

 
 
 
 
 
 
 
 
 
 
Figure 1.  Strap-down INS navigation computation diagram 
 
The impact of each EKF state on the system navigation 

solutions is different. Table 1 presents the navigation errors with 
different combination of the EKF states to be updated, using the 
field test data with 60 seconds GPS outage.  

 
Table 1. The impacts of the KF states 

 
EFK states Navigation error 

abias asf gbias ant grav pos vel atti Pos 
(m) 

Vel 
(m/s)

Atti 
(sec) 

v v v v v v v v 0.0 0.0 0.0 
x x x x x x x x 14.5 0.29 69 
x x x x x x x v 2.6 0.08 18 
x x x x x x v x 12.1 0.26 69 
x x x x x x v v 1.05 0.03 18 
x x x x x v v v 1.0 0.03 18 
 
The ‘x’ in the table indicates that an EKF state is not updated 

whilst the ‘v’ indicates that the associated state is updated. The 
navigation error is quite large without any EKF state updated 
after 60 seconds, while it drops much with only the navigation 
error states (position, velocity and attitude) updated. The attitude 
error states play the most important role in reducing the 
navigation errors. Therefore, it is possible to reduce the EKF 
predicted navigation errors without GPS updates by estimating 
the attitude and velocity states errors according to some factors, 
such as vehicle dynamic variation and environment 
(temperature) change etc.   

 
 

2.2 Cross Correlations 
 
If the process noise and the measurement noise are white and 

Gaussian, the initial state is Gaussian, and the system is linear, 
the EKF in a GPS/INS integrated system is convergent and the 
states of the EKF keep stable after adequate maneuvers[1]. 
However, the actual EKF states vary with time because these 
assumptions are not always valid. The factors causing the filter 
state variation include INS sensor imperfection, gravity variation 
and inaccurate EKF modelling etc. 

 
Figure 2 is an example of an EKF state’s variation with time, 

which is largely caused by the vehicle dynamic variations. The 
top curve in the figure is the vehicle heading change rate, and the 
bottom one is the corresponding EKF orientation error state. 
There are some relationships between them, which is unable to 
be modeled, but could be mapped by a properly designed NN 
after adequate training. 
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Figure 2.  EKF states variation with time 

 
The challenging issue is to find a proper method to predict the 

state variation. The vehicle heading change-rate is selected to 
analyze the impact of the vehicle dynamic variation on the filter 
state variations. Table 2 presents the maximum values of cross 
correlation function between the heading changing rate and the 
EKF states using field test data.  

 
Table 2. Cross correlation function between the heading 

changing rate and some EKF states 
 

KF state Nvδ Nvδ  Dvδ  bx∇  by∇  Hδψ Pδψ Rδψ

Crosscorr 0.6 0.45 0.45 0.5 0.7 0.45 0.45 0.4 

 
The Nvδ , Nvδ and Dvδ  in the table are the EKF 

velocity error states in three directions. bx∇ and
by∇ are the 

horizontal accelerometer biases, and Hδψ , Pδψ  and Rδψ are 
the attitude error states in three directions. The results in the table 
indicate that some EKF states have relative high cross correlation 
with the vehicle dynamic variation, represented by the heading 
changing rate. So it is possible to find the relationships between 
them. 

 
 

3. NN Inputs and Outputs 
 
3.1 NN Inputs Selection 
 

The principal strategy of the proposed NN and EKF hybrid 
method is using NN to map the relationships between vehicle 
dynamic variations during EKF measurement updates and the 
EKF calculated error states after each update. The NN training 
procedure is executed at the GPS sampling rate. Then the well-
trained NN can be used to improve the EKF prediction at 
preferred system output rate (up to the IMU sampling rate) 
during the GPS outages. To fully represent the vehicle dynamic 
variation, the input parameters of the NN are selected as the 
changes of vehicle velocity and attitude in each epoch. The 
average attitude in each epoch is also selected to deal with errors 
relating to gravity and earth rotation etc. For land vehicle 
applications, vertical movement is limited, and the NN input 
parameters can be selected as follows:  

 
[ , , , ]in N E H HNN v v ψ ψ= ∆ ∆ ∆          (3) 

 
It should be noticed that both the heading angle and its 

change rate are selected as inputs. As the heading angler ψH 

(green curve in Figure 3) is limited to the change between 
π and -π , its changing rate ∆ψH has spikes when the heading 
angle has jumps, as the red curve shown in the figure. These 
jumps will disturb the NN training, and need to be removed. The 
blue curve in the figure is ∆ψH after the spikes are removed. 
These jumps may also happen to the pitch and roll parameters for 
airborne applications.  
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 Figure 3.  Smooth heading change rate. 
 
 

3.2 NN Outputs Selection 
 
The NN outputs, or the training targets, are selected as the 

EKF error states that largely impact the system navigation 
solution, and have high cross correlations with parameters 
representing a vehicle’s dynamic variation. According to the 
analysis results in Section 2, the NN inputs are the filter states of 
velocity and orientation errors, as follows:  

 
[ , , , , , ]out N E D H P RNN v v vδ δ δ δψ δψ δψ=            (4) 

 
The system navigation error can be effectively attenuated if 

above filter states variation can be predicted. As shown in Figure 
4, the EKF states variations have two frequency domains. The 
low frequency domain is potentially caused by temperature 
change, gravity variation and EKF modelling errors etc., which 
can be estimated by linear polynomial curve fitting. The high 
frequency domain is largely caused by vehicle maneuver and 
INS sensors imperfection etc., which will be mapped with NN. 
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Figure 4. NN input and output sample 

 
After selecting proper inputs and outputs, a NN need to be 

designed and trained to map the relationships between them. 
There are several items need to be decided in the design of a NN, 
such as the number of layers, the number of neurons and the 
transfer function of each layer, the network training algorithm, 
the method and goal etc.  

 



 
4. Neural Network Design 

 
4.1 NN Supervised Learning 
 

NN can be designed to perform complex functions and solve 
problems that are difficult for conventional computers or human 
beings. Neural networks are composed of simple elements 
operating in parallel. These elements are inspired by biological 
nervous systems. As in nature, the network function is 
determined largely by the connections between elements.  

 
A NN can be trained to perform a particular function by 

adjusting the values of the connections (weights) between 
elements so that a particular input leads to a specific target. The 
NN is adjusted, based on a comparison of the output and the 
target, until the network output matches the target. The 
procedure of supervised learning for NN is shown in Figure 6. 
Given an unknown model or an unknown functional relationship 
with its input x and observed target d. A neural network learns to 
fit the relationship by comparing the output y from a neural 
network with the observed target d. It then adjusts the value of its 
internal weighted links w iteratively until the error e between y 
and d meet a predefined accuracy; or after certain times iteration.  
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Figure 5.  NN learning procedure[4] 

 
The learning rule specifies how the parameters in a NN 

should be updated to minimize a prescribed error measure, which 
is a mathematical expression that measures the discrepancy 
between the network’s output and the target. Typically many 
such input/target pairs are used to train a network. Batch training 
of a network proceeds by making weight and bias changes based 
on an entire set of input vectors. Incremental training changes the 
weights and biases of a network as needed after presentation of 
each individual input vector. Incremental training is sometimes 
referred to as "on line" or "adaptive" training. 

 
 

4.2 Multi-layer Feed-forward Neural Network  
 
The neuron model and the architecture of a NN describe how 

the network transforms its input into an output. A NN can have 
several layers. Each layer has a weight matrix W, a bias vector b, 
and an output vector a. A three-layer network and the 
corresponding functions are shown in Figure 6. The number of 
the layers is appended as a superscript to the variable of interest, 
to distinguish them between each of these layers. 

 
The layers of a multi-layer network play different roles. A 

layer that produces the network output is called an output layer. 
All other layers are hidden layers. A three-layer network shown 
in Figure 6 has one output layer (layer 3) and two hidden layers 
(layer 1 and 2). The neurons in the hidden layer gather values 
from all input neurons and pass the input to a transfer function 

that calculates the output for each neural node. It is common for 
different layers to have different numbers of neurons. 

 

 
 

Figure 6. Three layer neural network [9] 
 
The transfer function f of each layer can be selected 

individually. The network output is the function of the network 
input with all the function of each layer imbed together, as 
expressed by equation (5).  

 

    (5) 
 
Multiple-layer networks are quite powerful. For instance, a 

network of two layers, where the first layer is sigmoid and the 
second layer is linear, can be trained to approximate any function 
(with a finite number of discontinuities) arbitrarily well. More 
details about neuron model and the architecture of NN and can 
be found in the Matlab Neural Network Toolbox [9]. A three-
layer feed-forward NN is employed in this approach. The 
transfer functions of the first and second layers are sigmoid and 
the third layer is linear. They have 12, 18 and 6 neurons, 
respectively, for 100 epochs’ training set.  

 
 

4.3 Hybrid System Architecture 
 
The EKF and NN hybrid system block diagram is presented in 

Figure 7. As long as the DGPD signal is available, the system is 
in the training phase. The learning process is continuously 
adjusting its parameters at KF measurement update. During GPS 
outages, the NN parameters are used in the prediction phase to 
estimate the corresponding KF states. 

 

 
 

Figure 7.  Hybrid system flow chart 
 
The vehicle dynamic variation derived from the navigation 

solution is continuously as the input of the NN. During the 
training phase, the EKF produces navigation solutions, and 
updates the filter states with the GPS measurements, as the 
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detached lines in Figure 7 expressed. Some of the updated filter 
states are selected as the target for the network training, adjusting 
parameters in the network to match the NN output with the target. 
If the GPS signal is unavailable and the network is well trained, 
its output is used for INS error compensation.  

 
 

5. Results and Discussions 
 

Field test data were collected to evaluate the proposed hybrid 
method. The test system comprises two sets of Leica 530 GPS 
receiver and one set of Boeing’s C-MIGITS II (DQI-NP) INS 
system, which gyro and accelerometer bias is 5 deg/hr and 500 
µg respectively. Another MEMS INS (Crossbow’s IMU 400CC-
100) was also tested together. A Micro Tracker GPS receiver was 
used to synchronize the INS time tagging with the GPS time. 
One of the Leica receivers was set up as a reference station and 
the other one used as rover receiver with its antenna next to the 
INS unit, above the roof of the test vehicle. 1 Hz GPS data were 
saved in GPS receiver PCMCIA card and 100 Hz IMU data were 
stored in a notebook PC. The horizontal trajectory of the test is 
shown in Figure 8. 
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Figure 8.  Horizontal trajectory of the field test  
 
The data were processed with a modified AIMSTM software 

with the proposed Neural Network algorithm to evaluate the 
proposed EKF and NN hybrid approach for GPS/INS integration. 
The AIMSTM software was developed by the Center for Mapping 
at the Ohio State University (OSU) for direct geo-referencing 
large scale mapping and precise positioning applications [10]. 
The row measurement data were processed by AIMSTM first to 
generate reference navigation solutions and EKF error states. 
These data were then processed with the proposed hybrid 
algorithm.  
 
 
5.1 NN Training Results 
 

The NN was trained with an incremental batch method. A set 
of 100 epochs input vectors were applied to train the NN by 
adjusting the weight and bias matrixes. Then the next set of input 
vectors were applied for training. The back-propagation 
algorithm computes derivatives of the cost function with respect 
to the network weights. The weights were then updated using 
different learning rules. Conjugate gradient learning algorithm 
was used as it can reduce oscillatory behavior in the minimum 
search and reinforces the weight adjustment with previous 
successful path direction[11].  
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 Figure 9a. NN training results with Boeing’s INS 
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Figure 9b.  NN training results with Crossbow’s INS 

 
The training results of two parameters with two different INS 

are shown in Figures 9a and 9b. The NN output is very close to 
the target in the training window (masked in the figures), and 
keeps to follow the target after the window, though it is less 
similar to the target in comparison with the output in the training 
window. This means that NN after training can make reasonable 
prediction for quite a long period. This is useful to improve 
system navigation solutions during GPS signal outages. It is 
noticed that different training set requires different number of 
neurons to achieve optimal training results. 

 
 

5.2 Hybrid Navigation Results 
 
The field test data with trajectory in Figure 8 was processed. 

In order to access the performance of the hybrid method, GPS 
outages were simulated along various portions of test trajectory. 
The NN was trained 100 seconds before each GPS outage, which 
lasts for 60 seconds. During the GPS outages, the KF states 
selected as the output of the NN, which changes with the NN 
inputs (the vehicle dynamic variation), were applied for the INS 
measurement correction. The hybrid navigation results are 
compared with the results of INS stand along navigation, in 
terms of position, velocity and attitude errors referencing to the 
case without GPS outages. The data from both Boeing’s C-
MIGITS II and Crossbow’s IMU 400CC-100 were processed. 
The results are listed in the Table 3a and 3b. 

  
 



Table 3a. Test results with Boeing’s INS 
 

section xδ  (m) vδ (m/s) δψ (sec) 
1 4.5 6.8  0.16 0.23 23 33 
2 3.1 5.2 0.18 0.21 25 31 
3 3.4 5.3 0.16 0.22 32 41 
4 2.9 6.1  0.13 0.24  31 59  
5 5.3 9.7 0.22 0.36 42 81 

improvement 42% 32% 37% 
 
 

Table 3b. Test results with Crossbow’s INS 
 

section xδ  (m) vδ (m/s) δψ (sec) 
1 632 725  29 33 94 188 
2 732 868 27 30 36 58 
3 213 530 11 20 37 78 
4 209 269 9.9 14 19 69 
5 232 307 10 18 11 49 

improvement 25% 24% 55% 
 

The test results above show that the NN and KF hybrid 
method can improve the navigation solutions, in all terms of 
position, velocity and attitude, during the GPS outages. The NN 
after training works well around the training window. Its output 
can make reasonable predictions after the training window, and is 
useful to correct the EKF predictions. Further investigation is 
needed to develop a more effective NN algorithm to improve E
KF estimates during longer GPS outages. The same NN 
architecture works well for different types of INS. Further 
research will be done to find the optimal NN architecture and an 
effective online training method.  

 
 

6. Concluding Remarks 
 
This paper has presented a NN and KF hybrid method to 

reducing KF drift during GPS outages. The inputs and outputs of 
a NN are selected as the parameters representing a vehicle’s 
dynamic variation and the KF error states that have serious 
impact on the navigation solution. The NN is merged into an 
EKF for GPS/INS integration. The outputs of the trained NN are 
used to compensate KF drifts and improve navigation solutions 
when no GPS measurements are available.  

 
It is shown that relationships exist between a vehicle dynamic 

variation during the EKF measurement update (NN input) and 
the filter predicted error states (NN output). Primary test results 
have shown that a three-layer feed-forward NN with back the 
propagation learning method is capable of mapping the complex 
relationships after training. The proposed method can reduce the 
impact of vehicle dynamic variations, and improve the 
navigation solution during GPS outages, by about 40%, in 
comparison with INS stand along results in the GPS outage of 60 
seconds.  
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