• Title/Summary/Keyword: and High gain

Search Result 3,949, Processing Time 0.03 seconds

Two-Inductor Non-Isolated DC-DC Converter with High Step-Up Voltage Gain

  • Lee, Sze Sing;Chu, Bing;Lim, Chee Shen;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1069-1073
    • /
    • 2019
  • In this paper, an alternative non-isolated DC-DC converter with a high voltage boosting capability is proposed. Two inductors are used and one of them has its flux linkage increases during its charging period to achieve a high step-up voltage gain. Among the three integrated capacitors, one portrays the partial characteristic of the switched-capacitor technique, while the other two are connected in series across the load. With the two switches controlled using the same duty cycle, the proposed topology demonstrates the merits of a higher and wider range of step-up voltage gain when compared with recent topologies. In addition, a reduction in loss is induced and a higher efficiency is ensured with all the voltage stresses constrained within the output voltage. Operation of the proposed converter is analyzed and validated through experimental results obtained with a prototype.

Design of W-band Cascode Mixer with High Conversion Gain using 0.1-μm GaAs pHEMT Process (0.1-μm GaAs pHEMT 공정을 이용한 높은 변환이득을 가지는 W-대역 캐스코드 혼합기 설계)

  • Choe, Wonseok;Kim, HyeongJin;Kim, Wansik;Kim, Jongpil;Jeong, Jinho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.127-132
    • /
    • 2018
  • In this paper, a high conversion gain cascode mixer was designed in W-band and verified by the fabrication and measurements. In the high frequency band such as a W-band, the conversion loss of a mixer is increased because of the poor performance of transistors. This high conversion loss of the mixer requires additional circuits which can give an extra gain such as an RF buffer amplifier, and this can affects the linearity and stability of the overall systems. Therefore, it is necessary to maximize the conversion gain of the mixer. To maximize the conversion gain of the mixer, biases of the transistor were optimized, and output load impedance was optimized by the load-pull simulations. The designed mixer was fabricated in $0.1-{\mu}m$ GaAs pHEMT technology and verified by the measurements. The measurement results shows a maximum conversion gain of -4.7 dB at W-band and an input 1-dB compression point of 2.5 dBm.

Preliminary Study on the Detection of Late Potentials using High-Resolution Electrocardiography (HRECG에 의한 Late Potential의 검출에 관한 예비 연구)

  • Woo, Eung-Je;Park, Seung-Hun
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1993 no.05
    • /
    • pp.63-65
    • /
    • 1993
  • We have done a preliminary study on the detection of ventricular late potentials using high-resolution electrocardiography. We designed a battery powered low-noise ECG amplifier. We used the XYZ lead system and the amplifier provides 3 channels of X, Y, and Z signals with a conventional gain and another 3 channels of the amplitude-limited X, Y, and Z signals with high-gain. 12-bit data acquisition system interfaces the amplifiers to a personal computer for further signal analysis. Beat alignment algorithm was implemented on the low-gain signals to synchronize the signal averaging of the high-gain amplitude-limited signals. We suggest the use of the weighted vector sum of X', Y', and Z' signals based on the SNR of each channel. We speculate that this new method will increase the accuracy of the LP detector at the expense of more complicated hardware.

  • PDF

Design of High Gain Low Noise Amplifier for Bluetooth (블루투스 고이득 저잡음 증폭기 설계)

  • 손주호;최석우;김동용
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.1
    • /
    • pp.161-166
    • /
    • 2003
  • This paper presents a high gain LNA for a bluetooth application using 0.25$\mu\textrm{m}$ CMOS technology. The conventional one stage LNA has a low power gain. The presented one stage LNA using a cascode inverter LNA with a voltage reference and without a choke inductor has an improved Power gain. Simulation results of the 2.4GHz designed LNA shows a high power gain of 21dB, a noise figure of 2.2dB, and the power consumption of 255mW at 2.5V power supply.

  • PDF

Design of broadband low noise balanced amplifier (광대역 저잡음 평형 증폭기 설계)

  • 이정란;문성익;양두영
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.191-194
    • /
    • 1999
  • The balanced amplifier is a practical amplifier to, implement a broadband amplifier that has flat gain and good input and output VSWR. Three-stage amplifier design procedure usually divided into three partition satisfying the following requirements : low noise figure, high gain and high power output. FHX35LG HEMT device is used in the design can be obtained low noise figure at the first-stage, MGA82563 MMIC device is used in the design can be maintained high gain at the second-stage, and AHI MMIC device is used in the design can be required high power output at the third-stage. The results of three-stage balanced amplifier show that power gain is about 40㏈, noise figure is less than 1.2㏈ at operating frequency.

  • PDF

The Study of Gain Scheduled PD-like Fuzzy Logic Control : Application to High Maneuverable Aircraft

  • Hong, Sung-Kyung;Lee, Jung-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.141.1-141
    • /
    • 2001
  • This paper describes an approach for synthesizing a modularized gain scheduled PD type fuzzy logic controller(FLC) for a high maneuverable aircraft system, where the gains of FLC are on-line adapted according to the flight condition. Specially, the systematic procedure via root locus technique is carried out for the sellection of the gains of FLC. Simulation results demonstrate that the proposed gain scheduled fuzzy logic controller yields better control performance than the normal (without gain scheduling) fuzzy controller.

  • PDF

The study of a chopper-type transistorized d.c. amplifier circuit (교류변환형 트란지스터식 직류증폭회로에 관한 연구)

  • 한만춘;최창준
    • 전기의세계
    • /
    • v.18 no.5
    • /
    • pp.12-19
    • /
    • 1969
  • The sensitivity of transistorized d.c. amplifiers is mainly limited by drift at operating point caused by ambient temperature changes. A chopper-type transistorized amplifier is necessary to obtain a high sensitivity without recourse to drift compensation which requires the adjustment of several balancing controls. A chopper-stabilized system consisting of an electro-mechanical chopper for input and output and a high-gain a.c. amplifier is designed and analyzed. The gain of the a.c. amplifier, expressed as the ratio of voltages, is larger than 80db in the band of 50C/S - 100KC/S. The complete system gives an open-loop gain of 68db at direct current. The offset voltage is 20.mu.V referred in input and the voltage drift at the input is less than 10.mu.V/hr at 25.deg.C. This type of amplifier would be useful for the high-gain transistorized d.c. amplifier for analog computers. Also, due to the high input impedance, it is suitable for amplification of signals from wide range of source impedances.

  • PDF

Performance of a Planar Leaky-Wave Slit Antenna for Different Values of Substrate Thickness

  • Hussain, Niamat;Kedze, Kam Eucharist;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.202-207
    • /
    • 2017
  • This paper presents the performance of a planar, low-profile, and wide-gain-bandwidth leaky-wave slit antenna in different thickness values of high-permittivity gallium arsenide substrates at terahertz frequencies. The proposed antenna designs consisted of a periodic array of $5{\times}5$ metallic square patches and a planar feeding structure. The patch array was printed on the top side of the substrate, and the feeding structure, which is an open-ended leaky-wave slot line, was etched on the bottom side of the substrate. The antenna performed as a Fabry-Perot cavity antenna at high thickness levels ($H=160{\mu}m$ and $H=80{\mu}m$), thus exhibiting high gain but a narrow gain bandwidth. At low thickness levels ($H=40{\mu}m$ and $H=20{\mu}m$), it performed as a metasurface antenna and showed wide-gain-bandwidth characteristics with a low gain value. Aside from the advantage of achieving useful characteristics for different antennas by just changing the substrate thickness, the proposed antenna design exhibited a low profile, easy integration into circuit boards, and excellent low-cost mass production suitability.

An X-Ku Band Distributed GaN LNA MMIC with High Gain

  • Kim, Dongmin;Lee, Dong-Ho;Sim, Sanghoon;Jeon, Laurence;Hong, Songcheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.818-823
    • /
    • 2014
  • A high-gain wideband low noise amplifier (LNA) using $0.25-{\mu}m$ Gallium-Nitride (GaN) MMIC technology is presented. The LNA shows 8 GHz to 15 GHz operation by a distributed amplifier architecture and high gain with an additional common source amplifier as a mid-stage. The measurement results show a flat gain of $25.1{\pm}0.8dB$ and input and output matching of -12 dB for all targeted frequencies. The measured minimum noise figure is 2.8 dB at 12.6 GHz and below 3.6 dB across all frequencies. It consumes 98 mA with a 10-V supply. By adjusting the gate voltage of the mid-stage common source amplifier, the overall gain is controlled stably from 13 dB to 24 dB with no significant variations of the input and output matching.

High-Efficiency, High-Gain, Broadband Quasi-Yagi Antenna and Its Array for 60-GHz Wireless Communications

  • Ta, Son Xuat;Kang, Sang-Gu;Han, Jea Jin;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.3
    • /
    • pp.178-185
    • /
    • 2013
  • This paper introduces a high-efficiency, high-gain, broadband quasi-Yagi antenna, and its four-element array for use in 60-GHz wireless communications. The antenna was fed by a microstrip-to-slotline transition consisting of a curved microstripline and a circular slot to allow broadband characteristics. A corrugated ground plane was employed as a reflector to improve the gains in the low-frequency region of the operation bandwidth, and consequently, to reduce variation. The single antenna yielded an impedance bandwidth of 49 to 69 GHz for $|S_{11}|$ <-10dB and a gain of >12.0 dBi while the array exhibited a bandwidth of 52 to 68 GHz and a gain greater than 15.0 dBi. Both proposed designs had small gain variations (${\pm}0.5$ dBi) and high radiation efficiency (>95%) in the 60-GHz bands. The features of the proposed antenna were validated by designing, fabricating, and testing a scaled-up configuration of the single antenna at the 15-GHz band. The measurements resulted in an impedance bandwidth of 13.0 to 17.5 GHz for $|S_{11}|$ <-10dB, a gain of 10.1 to 13.2 dBi, and radiation efficiency in excess of 88% within this bandwidth. Additionally, the 15-GHz antenna yielded quite symmetric radiation profiles in both E- and H-planes, with a high front-to-back ratio.