• Title/Summary/Keyword: and CFD

Search Result 5,381, Processing Time 0.031 seconds

Design Guideline of Waveguide-Below-Cutoff Array for Electromagnetic Pulse Shielding (EMP 차폐 도파관의 형상 결정 가이드라인 작성)

  • Pang, Seung-Ki;Kim, Jae-Hun;Yook, Jong-Gwan;Kim, Yuna;Kim, Sangin
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.86-91
    • /
    • 2016
  • Convenient design guideline for Waveguide-below-cutoff (WBC) array is proposed to obtain the minimum waveguide length for electromagnetic pulse (EMP) shielding. The analysis includes circular, rectangular, and hexagonal WBC, determine the total length of the waveguide. When the unit side of rectangular WBC and the diagonal line of hexagonal WBC are given as 30 mm, the length of hexagonal WBC is 5 mm shorter than rectangular case with shielding effectiveness (SE) 80 dB. The length difference is deepened with SE of 100 dB, which shows approximately 30 mm shorter length for hexagonal case than others. In addition, hexagonal WBC requires much shorter length than circular WBC. In conclusion, hexagonal case is the most effective with respect to flow velocity and pressure loss for equivalent SE.

Evaluation of Thermal-hydraulic and Scaling Characteristics for Storage Vault (Storage Vault의 열유동 및 상사특성 평가)

  • Yu, Seung-hwan;Bang, Kyung-sik;Kim, Donghee;Lee, Kwan-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.2
    • /
    • pp.131-140
    • /
    • 2015
  • This research studied a scaling analysis for the selection of proper heat generation at tube for 1/4-scale storage vaults. First of all, the temperature field and velocity distribution of an original scale storage vault were analyzed and then numerical analysis of a 1/4-scale storage vault was performed to compare each model. The proper heat generation for a 1/4-scale storage vault, at which the temperature and velocity field of a 1/4-scale storage vault showed the best agreement with that of the original storage vault, was evaluated with proposed dimensionless parameters. The behavior of temperature and velocity of fluid in the 1/4-scale case were most similar to those of the original scale, using a heat flux 1.3 times higher than that seen in the original scale, which was approximately 190 W.

NUMERICAL STUDY ON THE UNSTEADY FLOW PHYSICS OF INSTECTS' FLAPPING FLIGHT USING FLUID-STRUCTURE INTERACTION (FSI를 활용한 2차원 곤충날개 주위 유동장 해석)

  • Lee, K.B.;Kim, J.H.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.151-158
    • /
    • 2009
  • To implement the insects' flapping flight for developing flapping MAVs(micro air vehicles), the unsteady flow characteristics of the insects' forward flight is investigated. In this paper, two-dimensional FSI(Fluid-Structure Interaction) simulations are conducted to examine realistic flow features of insects' flapping flight and to examine the flexibility effects of the insect's wing. The unsteady incompressible Navier-Stokes equations with an artificial compressibility method are implemented as the fluid module while the dynamic finite element equations using a direct integration method are employed as the solid module. In order to exchange physical information to each module, the common refinement method is employed as the data transfer method. Also, a simple and efficient dynamic grid deformation technique based on Delaunay graph mapping is used to deform computational grids. Compared to the earlier researches of two-dimensional rigid wing simulations, key physical phenomena and flow patterns such as vortex pairing and vortex staying can still be observed. For example, lift is mainly generated during downstroke motion by high effective angle of attack caused by translation and lagging motion. A large amount of thrust is generated abruptly at the end of upstroke motion. However, the quantitative aspect of flow field is somewhat different. A flexible wing generates more thrust but less lift than a rigid wing. This is because the net force acting on wing surface is split into two directions due to structural flexibility. As a consequence, thrust and propulsive efficiency was enhanced considerably compared to a rigid wing. From these numerical simulations, it is seen that the wing flexibility yields a significant impact on aerodynamic characteristics.

  • PDF

Numerical study of the influence of inlet shape design of a horizontal MOCVD reactor on the characteristics of epitaxial layer growth (수평 화학기상증착 반응기의 입구형상 설계가 단결정 박막증착률 특성에 미치는 영향에 관한 수치적 연구)

  • 정수진;김소정
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.5
    • /
    • pp.247-253
    • /
    • 2003
  • In this study, a numerical analysis of the deposition of gallium arsenide from TMGa and arsine in a horizontal MOCVD reactor is performed to investigate the effect of inlet diffuser shape of reactor on the flow and deposition characteristics. The effects of two geometric parameters (diffuser angle, diffuser shape) on the growth rate, growth rate uniformity, flow uniformity and pressure loss are presented. As a results, it is found that the optimum linear diffuser angle is in the range of $50^{\circ}$$55^{\circ}$ and parabolic diffuser in the range of $40^{\circ}$$45^{\circ}$ from the viewpoint of growth rate uniformity, flow uniformity and average growth rate. It is also found that variation of diffuser angle has greater impact on growth rate uniformity than average growth rate particularly in parabolic diffuser.

STUDY ON THE THERMAL-FLUID ANALYSIS OF CRYOGENIC CHAMBER FOR COLD CLIMATE TEST OF LARGE WIND TURBINE PARTS (대형 풍력발전기 부품의 극한 환경 시험을 위한 극저온 챔버의 열유동 해석에 대한 연구)

  • Kim, M.K.;Kang, Y.H.;Park, W.G.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.8-14
    • /
    • 2015
  • More and more, spaces are decreasing which satisfy multiple requirements for wind power plants. However, areas which have excellent wind resources and are free to civil complaints occupy a large space, although they are exposed to the cryogenic environment. This study conducted a thermal-fluid analysis of a cryogenic chamber for testing large wind turbine parts exposed to the cryogenic environment. The position of supply air is placed to the upper area to compare each cooling performance for each location of various outlets in mixing ventilated conditions. The study carried out CFD analysis for the chamber both with and without a test object. For the cases without the test object, the air temperature of the upper supply and down extract type chamber was cooled faster by 5-100% than the others. However, for the cases with the test object, the object temperature of upper supply and center extract on the opposite side type chamber was cooled faster by 33-132% than the others. The cooling performance by the air inside the chamber and the test object did not show the same pattern, which implicates the need to consider the cooling performance by not only the air but also the test object in the large cryogenic chamber design for testing large parts.

ANALYSIS OF HEAT TRANSFER ON SPENT FUEL DRY CASK DURING SHORT-TERM OPERATIONS (사용후핵연료 건식 용기의 단기운영공정 열전달 평가)

  • Kim, H.;Lee, D.G.;Kang, G.U.;Cho, C.H.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.54-61
    • /
    • 2016
  • When spent fuel assemblies from the reactor of nuclear power plants(NPPs) are transported, the assemblies are exposed to short-term operations that can affect the peak cladding temperature of spent fuel assemblies. Therefore, it needs to perform the analysis of heat transfer on spent fuel dry cask during the operation. For 3 dimensional computational fluid dynamnics(CFD) simulation, it is proposed that the short-term operation is divided into three processes: Wet, dry, and vacuum drying condition. The three processes have different heat transfer mode and medium. Metal transportation cask, which is Korea Radioactive Waste Agency(KORAD)'s developing cask, is evaluated by the methods proposed in this work. During working hours, the boiling at wet process does not occur in the cask and the peak cladding temperatures of all processes remain below $400^{\circ}C$. The maximum peak cladding temperature is $173.8^{\circ}C$ at vacuum drying process and the temperature rise of dry, and vacuum drying process occurs steeply.

Flow Analysis over Moving Circular Cylinder Near the Wall at Moderate Reynolds Number (낮은 레이놀즈 수에서 벽면에 근접하여 이동하는 실린더 주위의 유동해석)

  • Kwag, Seung-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1091-1096
    • /
    • 2012
  • The aerodynamic characteristics of circular cylinder in a channel are studied to make clear the flow feature by solving the Navier-Stokes equation based on the finite volume method with unstructured grids. Reviews are made on with the vorticity, velocity, dynamic pressure, residual and drag, where the Reynolds numbers are 50 and 100. The flows for $Re{\succeq}50$ shows the vortex shedding in the wake, and the result is the same as the case of moving cylinder. The ground effect of flat bottom results in the growth of vortex, being generated in the upper side of the cylinder and elongated in the rear. As the cylinder approaches to wall, for example 0.6, the cylinder plays as a role of blockage to obstruct the flow between the cylinder and wall. The drag coefficients are compared with others' results to confirm the validity of the present numerical simulation.

Numerical analysis of 2-DOF motions of an ocean floater with sloshing effects (슬로싱 영향을 동반한 해양 부유체의 2자유도 거동 수치해석)

  • Kim, HyunJong;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.617-622
    • /
    • 2013
  • The sloshing of liquid inside an ocean floater is caused by disturbances due to waves. For the analysis of sloshing impact within the floater and that of waves on the floater, the coupled analysis method is used. The Stokes $5^{th}$ order non-linear wave theory equations were adapted for wave making. Furthermore, Navier-Stokes equation and Shear-Stress Transport (SST) turbulent model were used to Computational Fluid dynamics, where the ocean floater motions are considered the heave and the pitch motion. The results obtained confirms the mutual relationship between the rigid body motions and that of sloshing, where the sloshing behaviour within the floater is characterized by the wave effects on the floater.

Numerical Study of the Characteristics of Internal Flow Including an Air Core in a Cylindrical Tank (공기기둥이 형성된 원통 용기의 내부유동 특성에 관한 수치해석 연구)

  • Park, Il-Seouk;Son, Jong-Hyeon;Sohn, Chang-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.269-276
    • /
    • 2012
  • An air core is generated during draining through an axisymmetrically placed circular orifice after rotating a cylindrical tank filled with a liquid. If an air core is generated, the draining flow rate decreases and the draining time increases. In this study, the process of the formation of the air core and internal flow characteristics in a cylindrical tank are studied by numerical methods. Several methods are used in the analysis, and the results are compared with experimental results to obtain the appropriate scheme. Axial, radial, and swirl velocity profiles on a variety of heights are shown graphically, and the internal flow structure is analyzed from the velocity profiles, the vector plot, and the stream function distribution.

Pressure-Loss Characteristics of an Asymmetric Bifurcation Model of Human Lung Airways (비대칭 인체 기관지 분지관의 압력손실 특성)

  • Kang, Min-Yeong;Lee, Jin-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.301-307
    • /
    • 2012
  • The characteristics of pressure loss in an asymmetric bifurcating tube were investigated numerically for steady inspiratory conditions. The loss coefficient K calculated for various asymmetry and flow-distribution ratios found in human lung airways showed a power-law dependence on the Reynolds number (Re) and length-to-diameter ratio (L/d), with different exponents for Re $\geq$ 100 and Re < 100. The fundamental characteristics of the asymmetric bifurcation are similar to the case of symmetric bifurcation. In addition, the effect of skewed inlet velocity profiles on the pressure loss was weak, and decreased with an increasing number of bifurcations.