DOI QR코드

DOI QR Code

Pressure-Loss Characteristics of an Asymmetric Bifurcation Model of Human Lung Airways

비대칭 인체 기관지 분지관의 압력손실 특성

  • Kang, Min-Yeong (Dept. of Mechanical Engineering, Pohang University of Science and Technology) ;
  • Lee, Jin-Won (Dept. of Mechanical Engineering, Pohang University of Science and Technology)
  • Received : 2011.09.21
  • Accepted : 2011.12.27
  • Published : 2012.03.01

Abstract

The characteristics of pressure loss in an asymmetric bifurcating tube were investigated numerically for steady inspiratory conditions. The loss coefficient K calculated for various asymmetry and flow-distribution ratios found in human lung airways showed a power-law dependence on the Reynolds number (Re) and length-to-diameter ratio (L/d), with different exponents for Re $\geq$ 100 and Re < 100. The fundamental characteristics of the asymmetric bifurcation are similar to the case of symmetric bifurcation. In addition, the effect of skewed inlet velocity profiles on the pressure loss was weak, and decreased with an increasing number of bifurcations.

정밀한 물질분배기관인 인체 기관지의 기능을 이해하기 위해서는 호흡에서 발생하는 다양한 유동 및 형상 조건에서 압력손실특성을 파악하는 것이 필수적이다. 본 연구는 기관지 구조의 기본 단위인 분지관의 층류 흡기유동 압력손실을 수치해석을 통해 확인하였다. 인체 기관지에 대한 관찰에서 보고되는 비대칭 형상과 유량분배비율 범위 안에서 압력손실계수 K 는 Re 와 관의 길이만의 함수로 다음과 같이 표현이 가능하며 $K{\propto}Re^{-1}(\frac{L}{d})^{3/4}$, Re<100, $K{\propto}Re^{-1/2}\(\frac{L}{d}\)^{1/2}$, $Re\geq100$, 이는 대칭 분지관의 관계식과 동일한 것이다. 연속분지로 입구 유속분포가 편향될 경우 분지관 압력손실의 변화는 4% 미만이었으며 분지가 반복될수록 그 차이는 줄어들어 무시할 만하였다.

Keywords

References

  1. West, B. J., 2007, Respiratory Physiology (8th ed.), Lippincott Williams & Wilkins, New York, pp. 13-14.
  2. Gehr, P., Bachofen, M. and Weibel, E. R., 1978, "The Normal Human Lung: Ultrastructure and Morphometric Estimation of Diffusion Capacity," Respir. Physiol., Vol. 32, No. 2, pp. 121-140. https://doi.org/10.1016/0034-5687(78)90104-4
  3. Tsuda, A., Henry, F. S. and Butler, J. P., 2008, "Gas and Aerosol Mixing in the Acinus," Respir. Physiol. Neurobi., Vol. 163, No. 1-3, pp. 139-149. https://doi.org/10.1016/j.resp.2008.02.010
  4. Weibel, E. R., 1963, Morphometry of the Human Lung, Springer, Berlin.
  5. Isabey, D. and Chang, H. K., 1981, "Steady and Unsteady Pressure-Flow Relationships in Central Airways," J. Appl. Physiol., Vol. 51, No. 5, pp. 1338-1348. https://doi.org/10.1152/jappl.1981.51.5.1338
  6. Comer, J. K., Kleinstreuer, C. and Zhang, Z., 2001, "Flow Structures and Particle Deposition Patterns in Double-Bifurcation Airway Models. Part 1. Air Flow Fields," J. Fluid Mech., Vol. 435, pp. 25-54.
  7. Liu, Y., So, R. M. C. and Zhang, C. H., 2003, "Modeling the Bifurcating Flow in an Asymmetric Human Lung Airway," J. Biomech., Vol. 36, No. 7, pp. 951-959. https://doi.org/10.1016/S0021-9290(03)00064-2
  8. van Ertbruggen, C., Hirsch, C. and Paiva, M., 2005, "Anatomically Based Three-Dimensional Model of Airways to Simulate Flow and Particle Transport Using Computational Fluid Dynamics," J. Appl. Physiol., Vol. 98, pp. 970-980. https://doi.org/10.1152/japplphysiol.00795.2004
  9. Kim, S.K., 2006, "The PIV Measurements on the Respiratory Gas Flow in the Human Airway," Trans. of the KSME B, Vol. 30, No. 11, pp. 1051-1056 https://doi.org/10.3795/KSME-B.2006.30.11.1051
  10. Raabe, O., Ych, H.C., Schum, G. M. and Phalen, R. F. 1976. Tracheobronchial Geometry: Human, Dog, Rat, Hamster. Lovelace Foundation for Medical Education and Research Report No. LF-53.
  11. Horsfield, K., Dart, G., Olson, D. E., Filley, G. F. and Cumming, G., 1971, "Models of the Human Bronchial Tree," J. Appl. Physiol., Vol. 31, No. 2, pp. 207-217. https://doi.org/10.1152/jappl.1971.31.2.207
  12. Phillips, C. G. and Kaye, S. R., 1995, "Diameter- Based Analysis of the Branching Geometry of Four Mammalian Bronchial Trees," Respir. Physiol., Vol. 102, No. 2-3, pp. 303-316. https://doi.org/10.1016/0034-5687(95)00056-9
  13. Kitaoka, H. and Suki, B., 1997, "Branching Design of the Bronchial Tree Based on a Diameter-Flow Relationship," J. Appl. Physiol., Vol. 82, No. 3, pp. 968-976. https://doi.org/10.1152/jappl.1997.82.3.968
  14. Majumdar, A., Alencar, A. M., Buldyrev, S. V., Hantos, Z., Lutchen, K. R., Stanley, H. E. and Suki, B., 2005, "Relating Airway Diameter Distributions to Regular Branching Asymmetry in the Lung," Phys. Rev. Lett., Vol. 95, No. 16, 168101. https://doi.org/10.1103/PhysRevLett.95.168101
  15. Heistracher, T. and Hofmann, W., 1995, "Physiologically Realistic Models of Bronchial Airway Bifurcations," J. Aerosol Sci., Vol. 26, No. 3, pp. 497-509. https://doi.org/10.1016/0021-8502(94)00113-D
  16. Hegedus, C. J., Balashazy, I. and Farkas, A., 2004, "Detailed Mathematical Description of the Geometry of Airway Bifurcations," Respir. Physiol. Neurobi., Vol. 141, No. 1, pp. 99-114. https://doi.org/10.1016/j.resp.2004.03.004
  17. Lee, D. Y., Park, S. S., Ban-Weiss, G. A., Fanucchi, M. V., Plopper, C. G. and Wexler, A. S., 2008, "Bifurcation Model for Characterization of Pulmonary Architecture," Anat. Rec., Vol. 291, No. 4, pp. 379-389. https://doi.org/10.1002/ar.20643
  18. Murray, C., 1926, "The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume," P. Natl. Acad. Sci. USA, Vol. 12, No. 3, pp. 207-214. https://doi.org/10.1073/pnas.12.3.207
  19. Horsfield, K. and Thurlbeck, A., 1981, "Relation Between Diameter and Flow in Branches of the Bronchial Tree," B. Math. Biol., Vol. 43, No. 6, pp. 681-691. https://doi.org/10.1007/BF02458417
  20. Pedley, T. J., Schroter, R. C. and Sudlow, M. F., 1970, "Energy Losses and Pressure Drop in Models of Human Airways," Respir. Physiol., Vol. 9, No. 3, pp. 371-386. https://doi.org/10.1016/0034-5687(70)90093-9
  21. Kang, M.Y., Hwang, J. and Lee, J.W., 2011, "Effect of Geometric Variations on Pressure Loss for a Model Bifurcation of the Human Lung Airway," J. Biomech., Vol. 44, No. 6, pp. 1196-1199. https://doi.org/10.1016/j.jbiomech.2011.02.011
  22. Ward-Smith, A. J., 1980, Internal Fluid Flow-the Fluid Dynamics of Flow in Pipes and Ducts, Oxford University Press, New York, pp. 435-447.