Numerical study of the influence of inlet shape design of a horizontal MOCVD reactor on the characteristics of epitaxial layer growth

수평 화학기상증착 반응기의 입구형상 설계가 단결정 박막증착률 특성에 미치는 영향에 관한 수치적 연구

  • 정수진 (동해대학교 자동차공학과) ;
  • 김소정 (동해대학교 전기전자공학과)
  • Published : 2003.10.01

Abstract

In this study, a numerical analysis of the deposition of gallium arsenide from TMGa and arsine in a horizontal MOCVD reactor is performed to investigate the effect of inlet diffuser shape of reactor on the flow and deposition characteristics. The effects of two geometric parameters (diffuser angle, diffuser shape) on the growth rate, growth rate uniformity, flow uniformity and pressure loss are presented. As a results, it is found that the optimum linear diffuser angle is in the range of $50^{\circ}$$55^{\circ}$ and parabolic diffuser in the range of $40^{\circ}$$45^{\circ}$ from the viewpoint of growth rate uniformity, flow uniformity and average growth rate. It is also found that variation of diffuser angle has greater impact on growth rate uniformity than average growth rate particularly in parabolic diffuser.

본 연구에서는 반응기의 유입 확대부의 형상이 반응기 내의 유동 및 증착특성에 미치는 영향을 연구하기 위하여 수평형 MOCVD 반응기에서 TMGa와 $AsH_3$로부터의 GaAs 증착에 관한 수치적 연구를 수행하였다. 두 개의 기하학적인자(확대각, 확대부 형상)가 증착률, 증착률 균일도. 유속 균일도, 압력강하에 미치는 영향을 연구하였다 웨이퍼 위에서의 증착률 균일도, 평균증착률, 유속 균일도를 고려한 결과, 직선형 확대부의 최적 확대각은 $50^{\circ}$$55^{\circ}$이며 포물선형 확대부의경우, $40^{\circ}$$45^{\circ}$이다. 또한 확대부의 확대각의 변화는 평균증착률 보다 증착률의 균일도에 큰 영향을 미치고 있음을 알 수 있으며 직선확대부보다 포물선형의 확대부에서 더 민감하게 나타남을 알 수 있었다.

Keywords

References

  1. J. Electrochem. Soc. v.35 Three-dimensional flow effects in silicon CVD in horizontal reactors H.K.Moffat;K.F.Jensen
  2. J. Crystal Growth v.100 Three-dimensional modeling of horizontal chemical vapor deposition Ⅰ. MOCVD at atmospheric pressure J.Quazzani;F.Rosenberger https://doi.org/10.1016/0022-0248(90)90256-K
  3. J. Crystal Growth v.112 Numerical study of the influence of reactor design on MOCVD with a comparison to experimental data A.N.Jansen;M.E.Orazem;B.A.Fox;W.A.Jesser https://doi.org/10.1016/0022-0248(91)90307-Q
  4. J. Crystal Growth v.203 Analysis of gallium arsenide deposition in a horizontal chemical vapor deposition reactor using massively parallel computations A.G.Salinger;J.N.Shadid;S.A.Hutchinson;G.L.Hennigan;K.D.Devine;H.K.Moffat https://doi.org/10.1016/S0022-0248(99)00140-2
  5. Int. J. Heat and Mass Transfer v.43 Optimization of a horizontal MOCVD reactor for uniform epitaxial layer growth W.K.Choi;D.H.Choi https://doi.org/10.1016/S0017-9310(99)00251-3
  6. J. Crystal Growth v.224 The importance of predicting rate-limited growth for accurate modeling of commercial MOCVD reactors S.Mazumder;S.A.Lowry https://doi.org/10.1016/S0022-0248(01)00813-2
  7. J. Crystal Growth v.247 Numerical analysis of the growth of GaN layer in MOCVD reactor C.Y.Shin;B.J.Baek;C.R.Lee;B.Pak;J.M.Yoon;K.S.Park https://doi.org/10.1016/S0022-0248(02)02020-1
  8. J. Crystal Growth v.96 A new inlet area design for horizontal MOVPE reactors C.Goodings;N.J.Mason;P.J.Walker;D.P.Jebb https://doi.org/10.1016/0022-0248(89)90270-4
  9. J. Crystal Growth v.125 Numerical study of transport phenomena in MOCVD reactors using a finite volume multigrid solver F.Durst;L.Kadinskii;M.Peric;M.Schafer https://doi.org/10.1016/0022-0248(92)90303-Z
  10. STAR-CD Ver. 3.15 Users' Mannual Computational Fluid Dynamics Ltd.
  11. Ph.D Thesis A finite volum method for the prediction of three-dimensional fluid flow in complex ducts M.Peric