• Title/Summary/Keyword: anatase titania

Search Result 69, Processing Time 0.026 seconds

Effect of Heat Treatment Temperatures on Photocatalytic Degradation of Methylene Blue by Mesoporous Titania (메틸렌블루 광촉매 분해반응에서 이산화티타늄 열처리 온도 영향)

  • Lim, Samryong;Nguyen-Phan, Thuy-Duong;Shin, Eun Woo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.61-66
    • /
    • 2011
  • In this study, we prepared $TiO_2$ with the sol-gel method and controlled physico-chemical properties by a simple heat treatment. All materials were applied to photocatalytic decomposition of methylene blue and the material treated at 473 K showed the highest photocatalytic efficiency. The high performance resulted from a high adsorption amount of methylene blue due to a high surface area of $229.8m^2/g$. However, the material treated at 873 K, despite of a low surface area of $23.8m^2/g$ and a large particle size of 28.38 nm, exhibits a good photocatalytic performance due to the effect of mixed cyrstalline rutile and anatase phases formed by the high heat treatment temperature.

A Study on the Preparation and Growth Mechanism of Titanium Dioxide using Organic-Inorganic Hybrid Titanium Complex (유무기 하이브리드 티타늄 착화합물을 이용한 티타니아의 제조 방법 및 성장 거동에 대한 연구)

  • Kang, Yubin;Choi, Jin-Ju;Kwon, Nam Hun;Kim, Dae-Guen;Lee, Kun-Jae
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.487-492
    • /
    • 2019
  • Titanium dioxide (TiO2) is a typical inorganic material that has an excellent photocatalytic property and a high refractive index. It is used in water/air purifiers, solar cells, white pigments, refractory materials, semiconductors, etc.; its demand is continuously increasing. In this study, anatase and rutile phase titanium dioxide is prepared using hydroxyl and carboxyl; the titanium complex and its mechanism are investigated. As a result of analyzing the phase transition characteristics by a heat treatment temperature using a titanium complex having a hydroxyl group and a carboxyl group, it is confirmed that the material properties were different from each other and that the anatase and rutile phase contents can be controlled. The titanium complexes prepared in this study show different characteristics from the titania-formation temperatures of the known anatase and rutile phases. It is inferred that this is due to the change of electrostatic adsorption behavior due to the complexing function of the oxygen sharing point, which crystals of the TiO6 structure share.

A Study on the Preparation of Aluina & Titania Sols for Coatings (코팅용 알루미타, 티타니아솔 제조에 관한 연구)

  • Kim, Chu-Hui;Choe, Hyeong-Su;Jo, Yeong-Sang;Im, Jong-Ju
    • Korean Journal of Materials Research
    • /
    • v.4 no.3
    • /
    • pp.319-328
    • /
    • 1994
  • Aluminium and titanium precursors containing $\beta$-diketonate ligands were used for the synthesis of polymeric sols of alumina and titania by sol-gel methods. To prepare polymeric sols by solgel processing, we synthesized modified precursors having chelating organic ligands. With these precursors it was found to be possible to control both hydrolysis and polycondensation reaction rates which resulted in ultrafine particles few nms of average size. The optimum molar ratio of acid to alkoxide for alumina sol was 0.3-0.4 and that of water to alkoxide &as 1. On the other hand, the corresponding ratios for titania sol were found be 0.25-0.20 and 1 respectively. Dynamic light scattering measurements indicated that the average particle size in both sols was in the order of few nms. SEM photographs were taken to observe crack-free and smooth surfaces of coated membranes after sintering at $450^{\circ}C$. Alumina coated membrane on a slide glass had about 4-4.5$\mu \textrm{m}$, thickness and titania coated one had 2-2.5$\mu \textrm{m}$, thickness. And according to TEM photographs, the grain size of titania was smaller than 30nm and that of alumina was in the range of few $\AA$s to 2nms. An X-ray diffraction study revealed that alumina was $\gamma$ phase and titania was anatase crystal.

  • PDF

The Photocatalytic Decompositions of 2-Chlorophenol on the Sn-impregnated Titania Nanoparticles and Nanotube (Sn 함침-티타니아 나노입자와 나노튜브에 놓인 2-Chlorophenol 광 분해 성능)

  • Kim, Hyun Soo;Lee, Gayoung;Park, Sun-Min;Kang, Misook
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.461-468
    • /
    • 2012
  • This study focuses on the difference of photocatalytic activity depending on crystal structure type of nanoparticles ($TiO_2$) and nanotubes (TNT). The photodecomposition of 2-chlorophenol on the synthesized $TiO_2$, Sn-impregnated $TiO_2$, TNT, and Snimpregnated TNT were evaluated. The characteristics of the synthesized photocatalyts, TNT, Sn/TNT, $TiO_2$, and Sn/$TiO_2$ were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-Visible spectroscopy (UV-Vis), and cyclic voltammeter (CV). The water-suspended 2-chlorophenol photodegradation over $TiO_2$ (anatase structure) catalyst was better than that over pure TNT. Particularly, the water-suspended 2-chlorophenol of 10 ppm was perfectly decomposed within 4 h over Sn/$TiO_2$ photocatalyst.

Preparation and characterization of TiO2 membrane on porous 316 L stainless steel substrate with high mechanical strength

  • Mohamadi, Fatemeh;Parvin, Nader
    • Membrane and Water Treatment
    • /
    • v.6 no.3
    • /
    • pp.251-262
    • /
    • 2015
  • In this work the preparation and characterization of a membrane containing a uniform mesoporous Titanium oxide top layer on a porous stainless steel substrate has been studied. The 316 L stainless steel substrate was prepared by powder metallurgy technique and modified by soaking-rolling and fast drying method. The mesoporous titania membrane was fabricated via the sol-gel method. Morphological studies were performed on both supported and unsupported membranes using scanning electron microscope (SEM) and field emission scanning microscope (FESEM). The membranes were also characterized using X-ray diffraction (XRD) and $N_2$-adsorption / desorption measurement (BET analyses). It was revealed that a defect-free anatase membrane with a thickness of $1.6{\mu}m$ and 4.3 nm average pore size can be produced. In order to evaluate the performance of the supported membrane, single-gas permeation experiments were carried out at room temperature with nitrogen gas. The permeability coefficient of the fabricated membrane was $4{\times}10^{-8}\;lit\;s^{-1}\;Pa^{-1}\;cm^{-1}$.

Crystallization of the Titania Coated on Kaolinite Powder using Sol-Gel Method (졸-겔법에 의해 카올리나이트 분말에 코팅된 티타니아의 결정화)

  • Yang, Young-Cheol;Jeong, Soo-Bok;Kim, Byoung-Gyu
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.247-259
    • /
    • 2008
  • $TiO_2$ coatings on kaolinite powders by sol-gel method were carried out using mixture of titanium isopropoxide, ethanol as solvent, HCl as a catalyst and $H_{2}O$ for hydrolysis. The mole ratio of reaction mixture, stirring time. aging time, crystallization time and crystallization temperature influenced to the crystallization of $TiO_2$ coated on kaolinite and metakaolinite Powders. Optimum condition for $TiO_2$ coatings on kaolinite was as follows; TIP 0.1 mol, $H_{2}O$ 0.15 mol, HCl 0.005 mol, ethanol 100 ml, raw kaolinite 50 g, stirring time 4 hrs, aging time 24 hrs, crystallization time 2 hrs and crystallization temperature $1050^{\circ}C$. The crystallinity of the anatase under optimum condition was about 17.61%. The anatase crystallinity of the $TiO_2$ coated on raw kaolinitc powders (17.61% at $1050^{\circ}C$) was higher at the lower calcination temperature compared with metakaolinite (17.39% at $1200^{\circ}C$).

Controlling Size, Shape and Polymorph of TiO2 Nanoparticles by Temperature-Controlled Hydrothermal Treatment

  • Kwon, Do Hun;Jung, Young Hee;Kim, Yeong Il
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.3
    • /
    • pp.238-245
    • /
    • 2015
  • The crystallization and morphology change of amorphous titanias by hydrothermal treatment have been investigated. The amorphous titanias were prepared by pure water hydrolysis of two different precursors, titanium tetraisopropoxide (TTIP) and TTIP modified with acetic acid (HOAc) and characterized prior to hydrothermal treatment. In order to avoid complicate situation, the hydrothermal treatment was performed in a single solvent water with and without strong acids at various temperatures. The effects of strong acid, temperature and time were systematically investigated on the transformation of amorphous titania to crystalline TiO2 under simple hydrothermal condition. Without strong acid the titanias were transformed into only anatase phase nanoparticle regardless of precursor type, temperature and time herein used (up to 250 ℃ and 48 hours). The treatment temperature and time effected only on the crystalline size, not on the crystal phase et al. However, it was clearly revealed that the strong acids such as HNO3 and HCl catalyzed the formation of rutile phase depending on temperature. HCl was slightly better than HNO3 in this catalytic activity. The morphology of rutile TiO2 formed was also a little affected by the type of acid. The precursor modifier, HOAc slightly reduced the catalytic activity of the strong acids in rutile phase formation.

The effect of introduced method of titania and applied potential on the photoelectrocatalytic properties of CNT/TiO2 electrodes

  • Zhang, Feng-Jun;Chen, Ming-Liang;Oh, Won-Chun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.1
    • /
    • pp.35-42
    • /
    • 2010
  • In this paper, three types of CNT/$TiO_2$ composite electrodes were prepared with different methods. The changes in XRD patterns showed that the Electrode A contained a mixed phase of anatase and rutile while the Electrode B and Electrode C contained a typical single and clear anatase crystal structure. From SEM micrographs, $TiO_2$ particles were adhered on the surface of the CNT network in the forms of small clusters. The results of chemical elemental analysis indicated that the main elements such as C, O and Ti were existed. The results demonstrated that the efficiency of photoelectrocatalytic (PEC) oxidation for methylene blue (MB) was higher than that of photocatalytic (PC) oxidation. There was a clear enhancement trend of the MB degradation using the prepared CNT/$TiO_2$ composite electrodes with an increase of applied potential. Finally, the prominent PEC activities of the CNT/$TiO_2$ composites could be attributed to combination effects of photo-degradation of $TiO_2$, electron assistant of CNT and function of applied potential.

Photocatalytic Oxidation for Organic Dye using Phenol Resin-based Carbon-titania Composites

  • Oh, Won-Chun;Na, Yu-Ri
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.36-42
    • /
    • 2008
  • Carbon/$TiO_2$ composite photocatalysts were thermally synthesized with different mixing ratios of anatase to phenol resin through an ethanol solvent dissolving method. The XRD patterns revealed that only anatase phase can be identified for Carbon/$TiO_2$ composites. The diffraction peaks of carbon were not observed, however, due to the low carbon content on the $TiO_2$ surfaces and the low crystallinity of amorphous carbon. The results of chemical elemental analyses of the Carbon/$TiO_2$ composites showed that most of the spectra for these samples gave stronger peaks for carbon and Ti metal than that of any other elements. The BET surface area increases to the maximum value of $488\;m^2/g$ with the area depending on the amount of phenol resin. From the SEM images, small $TiO_2$ particles were homogeneously distributed to a composite cluster with the porosity of phenol resin-based carbon. From the photocatalytic results, the MB degradation should be attributed to the three kinds of synergetic effects, such as photocatalysis, adsorptivity, and electron transfer by light absorption between supporter $TiO_2$ and carbon.