Browse > Article
http://dx.doi.org/10.14478/ace.2011.22.1.061

Effect of Heat Treatment Temperatures on Photocatalytic Degradation of Methylene Blue by Mesoporous Titania  

Lim, Samryong (Ulsan Science High School)
Nguyen-Phan, Thuy-Duong (School of Chemical Engineering and Bioengineering, University of Ulsan)
Shin, Eun Woo (School of Chemical Engineering and Bioengineering, University of Ulsan)
Publication Information
Applied Chemistry for Engineering / v.22, no.1, 2011 , pp. 61-66 More about this Journal
Abstract
In this study, we prepared $TiO_2$ with the sol-gel method and controlled physico-chemical properties by a simple heat treatment. All materials were applied to photocatalytic decomposition of methylene blue and the material treated at 473 K showed the highest photocatalytic efficiency. The high performance resulted from a high adsorption amount of methylene blue due to a high surface area of $229.8m^2/g$. However, the material treated at 873 K, despite of a low surface area of $23.8m^2/g$ and a large particle size of 28.38 nm, exhibits a good photocatalytic performance due to the effect of mixed cyrstalline rutile and anatase phases formed by the high heat treatment temperature.
Keywords
mesoporous titania; methlene blue; photocatalytic decomposition; heat treatment;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 X. Z. Li and M. Zhang, Water Sci. Tech., 34, 49 (1996).
2 N. H. Ince, M. I. Stefan, and J. R. Bolton, J. Adv. Oxid. Technol., 2, 442 (1997).
3 C. N. Kurucz, H. An, J. Greene, and T. D. Waite, J. Adv. Oxid. Technol., 3, 442 (1998).
4 F. Zhang, J. Zhao, T. Shen, H. Hidaka, E. Pelizzetti, and N. Serpone, Appl. Catal. B: Environ., 15, 147 (1998).   DOI   ScienceOn
5 L. Tinucci, E. Borgarello, C. Minero, and E. Pelizzetti, Photocatalytic Purification and Treatment of Water and Air, ed. H. Al-Ekabi, and David F. Ollis, 585, Elsevier Science Ltd., Amsterdam (1993).
6 Y. S. Yang, W. Y. Jung, S. H. Baek, G. D. Lee, S. S. Park, and S. S. Hong, J. Korean Ind. Eng. Chem., 18, 148 (2007).
7 D. Bahenemann, D. Bockelmann, and R. Goslich, Sol. Energ. Mater., 24, 564 (1991).   DOI   ScienceOn
8 J. M. Herrmann, C. Guillard, and P. Pichat, Catal. Today, 17, 7 (1993).   DOI   ScienceOn
9 D. F. Ollis, E. Pelizzetti, and N. Serpone, Environ. Sci. Technol., 25, 1523 (1991).
10 X. Chen and S. Mao, Chem. Rev., 107, 2892 (2007).
11 C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, Chem. Rev., 105, 1025 (2005).   DOI   ScienceOn
12 L. T. Mancic, B. A. Marinkovic, P. M. Jardim, O. B. Milosevic, and F. Rizzo, Cryst. Growth Des., 9, 2152 (2009).   DOI   ScienceOn
13 M. V. Rao, K. Rajeshwar, V. R. Vernerker, and J. Dubow, J. Phys. Chem., 84, 1987 (1980).   DOI
14 M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev., 95, 69 (1995).   DOI   ScienceOn
15 S. Y. Chae, M. K. Park, S. K. Lee, T. Y. Kim, S. K. Kim, and W. I. Lee, Chem. Mater., 15, 3326 (2003).   DOI   ScienceOn
16 T. Peng, D. Zhao, K. Dai, W. Shi, and K. Hirao, J. Phys. Chem. B., 109, 4947 (2005).   DOI   ScienceOn
17 X. C. Wang, J. C. Yu, C. M. Ho, and A. C. Mak, Chem. Commum., 2262 (2005).
18 G. S. Li, J. C. Yu, J. Zhu, and Y. Cao, Micro. Meso. Mater., 106, 278 (2007).   DOI   ScienceOn
19 J Matos, J. Laine, and J.-M. Herrmann, Appl. Catal. B Environ., 18, 281 (1998).   DOI   ScienceOn
20 A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, and J.-M. Herrmann, Appl. Catal. B: Environ., 31, 145 (2001).   DOI   ScienceOn
21 T. A. Kandiel, R. Dillert, A. Feldhoff, and D. W. Bahnemann, J. Phys. Chem. C, 114, 4909 (2010).   DOI   ScienceOn