DOI QR코드

DOI QR Code

A Study on the Preparation and Growth Mechanism of Titanium Dioxide using Organic-Inorganic Hybrid Titanium Complex

유무기 하이브리드 티타늄 착화합물을 이용한 티타니아의 제조 방법 및 성장 거동에 대한 연구

  • Kang, Yubin (Material Science & Chemical Engineering Center, Institute for Advanced Engineering) ;
  • Choi, Jin-Ju (Material Science & Chemical Engineering Center, Institute for Advanced Engineering) ;
  • Kwon, Nam Hun (Department of Energy Engineering, Dankook University) ;
  • Kim, Dae-Guen (Material Science & Chemical Engineering Center, Institute for Advanced Engineering) ;
  • Lee, Kun-Jae (Department of Energy Engineering, Dankook University)
  • 강유빈 (고등기술연구원 융합소재연구센터) ;
  • 최진주 (고등기술연구원 융합소재연구센터) ;
  • 권남훈 (단국대학교 에너지공학과) ;
  • 김대근 (고등기술연구원 융합소재연구센터) ;
  • 이근재 (단국대학교 에너지공학과)
  • Received : 2019.11.20
  • Accepted : 2019.12.12
  • Published : 2019.12.28

Abstract

Titanium dioxide (TiO2) is a typical inorganic material that has an excellent photocatalytic property and a high refractive index. It is used in water/air purifiers, solar cells, white pigments, refractory materials, semiconductors, etc.; its demand is continuously increasing. In this study, anatase and rutile phase titanium dioxide is prepared using hydroxyl and carboxyl; the titanium complex and its mechanism are investigated. As a result of analyzing the phase transition characteristics by a heat treatment temperature using a titanium complex having a hydroxyl group and a carboxyl group, it is confirmed that the material properties were different from each other and that the anatase and rutile phase contents can be controlled. The titanium complexes prepared in this study show different characteristics from the titania-formation temperatures of the known anatase and rutile phases. It is inferred that this is due to the change of electrostatic adsorption behavior due to the complexing function of the oxygen sharing point, which crystals of the TiO6 structure share.

Keywords

References

  1. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga: Science, 293 (2001) 269. https://doi.org/10.1126/science.1061051
  2. J. Yamamoto, A. Tan, R. Shiratsuchi, S. Hayase, C. R. Chenthamarakshan and K. Rajeshwar: Adv. Mater., 15 (2003) 1823. https://doi.org/10.1002/adma.200305239
  3. R. L. Carlin, S. N. Bhatia and C. J. O'Connor: J. Am. Chem. Soc., 99 (1977) 7728. https://doi.org/10.1021/ja00465a064
  4. M. Radecka and M. Rekas: J. Am. Ceram. Soc., 85 (2002) 346. https://doi.org/10.1111/j.1151-2916.2002.tb00095.x
  5. K. Nakano, E. Obuchi, S. Takagi, R. Yamamoto, T. Tanizaki, M. Taketomi, M. Eguchi, K. Ichida, M. Suzuki and A. Hashimoto: Sep. Purif. Technol., 34 (2004) 67. https://doi.org/10.1016/S1383-5866(03)00176-X
  6. S. U. M. Khan, M. Al-Shahry and W. B. Ingler Jr: Science, 297 (2002) 2243. https://doi.org/10.1126/science.1075035
  7. P. Manivasakan, V. Rajendran, P. R. Rauta, B. B. Sahu, P. Sahu, B. K. Panda, S. Valiyaveettill and S. Jegadesan: J. Am. Ceram. Soc., 93 (2010) 2236. https://doi.org/10.1111/j.1551-2916.2010.03727.x
  8. M. Gotic, M. Ivanda, A. Sekulic, S. Music, S. Popovic, A. Turkovic and K. Furic: Mater. Lett., 28 (1996) 225. https://doi.org/10.1016/0167-577X(96)00061-4
  9. M. R. Ayers and A. J. Hunt: Mater. Lett., 34 (1998) 290. https://doi.org/10.1016/S0167-577X(97)00181-X
  10. M. Kakihana, M. Kobayashi, K. Tomita and V. Petrykin: Bull. Chem. Soc. Jpn., 83 (2010) 1285. https://doi.org/10.1246/bcsj.20100103
  11. M. Tada, K. Tomita, V. Petrykin and M. Kakihana: Solid State Ion., 151 (2002) 293. https://doi.org/10.1016/S0167-2738(02)00726-9
  12. J. A. Chang, M. Vithal, I. C. Baek and S. I. Seok: J. Solid State Chem., 182 (2009) 749. https://doi.org/10.1016/j.jssc.2008.12.024
  13. K. C. Song and S. E. Pratsinis: J. Colloid Interface Sci., 231 (2000) 289. https://doi.org/10.1006/jcis.2000.7147
  14. P. Paunovic, A. Grozdanov, A. Cesnovar, P. Makreski, G. Gentile, B. Ranguelov and E. Fidancevska: J. Eng. Mater. Technol., 137 (2015) 021003. https://doi.org/10.1115/1.4029112
  15. D. A. H. Hanaor and C. C. Sorrell: J. Mater. Sci., 46 (2011) 855. https://doi.org/10.1007/s10853-010-5113-0
  16. R. A. Spurr and H. Myers: Anal. Chem., 29 (1957) 760. https://doi.org/10.1021/ac60125a006