DOI QR코드

DOI QR Code

Effect of Heat Treatment Temperatures on Photocatalytic Degradation of Methylene Blue by Mesoporous Titania

메틸렌블루 광촉매 분해반응에서 이산화티타늄 열처리 온도 영향

  • Received : 2010.09.27
  • Accepted : 2010.11.09
  • Published : 2011.02.10

Abstract

In this study, we prepared $TiO_2$ with the sol-gel method and controlled physico-chemical properties by a simple heat treatment. All materials were applied to photocatalytic decomposition of methylene blue and the material treated at 473 K showed the highest photocatalytic efficiency. The high performance resulted from a high adsorption amount of methylene blue due to a high surface area of $229.8m^2/g$. However, the material treated at 873 K, despite of a low surface area of $23.8m^2/g$ and a large particle size of 28.38 nm, exhibits a good photocatalytic performance due to the effect of mixed cyrstalline rutile and anatase phases formed by the high heat treatment temperature.

본 연구에서는 이산화티타늄을 솔-젤 방법으로 제조하고 간단한 열처리를 통하여 제조된 이산화티타늄의 물리화학적 특성을 조절하였다. 이들을 메틸렌블루 광분해 반응에 적용한 결과, 473 K에서 열처리한 촉매가 가장 높은 광분해 효율을 보여주었다. 이는 473 K에서 열처리한 촉매가 가장 높은 비표면적($229.8m^2/g$)을 가지고 있고, 이로 인해 메틸렌블루의 흡착이 많이 일어났기 때문인 것으로 보인다. 한편 873 K에서 열처리한 촉매는 낮은 비표면적($23.8m^2/g$) 및 큰 입자 크기(28.38 nm)에도 불구하고 비교적 높은 광촉매 효율을 보여주는데, 이는 고온 열처리로 인한 형성된 rutile 상과 기존의 anatase상의 혼합효과에 기인한 것으로 보인다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. X. Z. Li and M. Zhang, Water Sci. Tech., 34, 49 (1996).
  2. N. H. Ince, M. I. Stefan, and J. R. Bolton, J. Adv. Oxid. Technol., 2, 442 (1997).
  3. C. N. Kurucz, H. An, J. Greene, and T. D. Waite, J. Adv. Oxid. Technol., 3, 442 (1998).
  4. F. Zhang, J. Zhao, T. Shen, H. Hidaka, E. Pelizzetti, and N. Serpone, Appl. Catal. B: Environ., 15, 147 (1998). https://doi.org/10.1016/S0926-3373(97)00043-X
  5. L. Tinucci, E. Borgarello, C. Minero, and E. Pelizzetti, Photocatalytic Purification and Treatment of Water and Air, ed. H. Al-Ekabi, and David F. Ollis, 585, Elsevier Science Ltd., Amsterdam (1993).
  6. Y. S. Yang, W. Y. Jung, S. H. Baek, G. D. Lee, S. S. Park, and S. S. Hong, J. Korean Ind. Eng. Chem., 18, 148 (2007).
  7. D. Bahenemann, D. Bockelmann, and R. Goslich, Sol. Energ. Mater., 24, 564 (1991). https://doi.org/10.1016/0165-1633(91)90091-X
  8. J. M. Herrmann, C. Guillard, and P. Pichat, Catal. Today, 17, 7 (1993). https://doi.org/10.1016/0920-5861(93)80003-J
  9. D. F. Ollis, E. Pelizzetti, and N. Serpone, Environ. Sci. Technol., 25, 1523 (1991).
  10. X. Chen and S. Mao, Chem. Rev., 107, 2892 (2007).
  11. C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, Chem. Rev., 105, 1025 (2005). https://doi.org/10.1021/cr030063a
  12. L. T. Mancic, B. A. Marinkovic, P. M. Jardim, O. B. Milosevic, and F. Rizzo, Cryst. Growth Des., 9, 2152 (2009). https://doi.org/10.1021/cg800759n
  13. M. V. Rao, K. Rajeshwar, V. R. Vernerker, and J. Dubow, J. Phys. Chem., 84, 1987 (1980). https://doi.org/10.1021/j100452a023
  14. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev., 95, 69 (1995). https://doi.org/10.1021/cr00033a004
  15. S. Y. Chae, M. K. Park, S. K. Lee, T. Y. Kim, S. K. Kim, and W. I. Lee, Chem. Mater., 15, 3326 (2003). https://doi.org/10.1021/cm030171d
  16. T. Peng, D. Zhao, K. Dai, W. Shi, and K. Hirao, J. Phys. Chem. B., 109, 4947 (2005). https://doi.org/10.1021/jp044771r
  17. X. C. Wang, J. C. Yu, C. M. Ho, and A. C. Mak, Chem. Commum., 2262 (2005).
  18. G. S. Li, J. C. Yu, J. Zhu, and Y. Cao, Micro. Meso. Mater., 106, 278 (2007). https://doi.org/10.1016/j.micromeso.2007.03.018
  19. J Matos, J. Laine, and J.-M. Herrmann, Appl. Catal. B Environ., 18, 281 (1998). https://doi.org/10.1016/S0926-3373(98)00051-4
  20. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, and J.-M. Herrmann, Appl. Catal. B: Environ., 31, 145 (2001). https://doi.org/10.1016/S0926-3373(00)00276-9
  21. T. A. Kandiel, R. Dillert, A. Feldhoff, and D. W. Bahnemann, J. Phys. Chem. C, 114, 4909 (2010). https://doi.org/10.1021/jp912008k