• Title/Summary/Keyword: analyzing mathematics

Search Result 537, Processing Time 0.022 seconds

Teachers' understanding of the definition of rational exponent (유리수 지수 정의에 대한 교사 이해 분석)

  • Shin, Bomi
    • The Mathematical Education
    • /
    • v.60 no.1
    • /
    • pp.21-39
    • /
    • 2021
  • The aim of this study was to deduce implications of the growth of mathematics teachers' specialty for effective instruction about the formulae of exponentiation with rational exponents by analyzing teachers' understanding of the definition of rational exponent. In order to accomplish the aim, this study ascertained the nature of the definition of rational exponent through examining previous literature and established specific research questions with reference to the results of the examination. A questionnaire regarding the nature of the definition was developed in order to solve the questions and was taken to 50 in-service high school teachers. By analysing the data from the written responses by the teachers, this study delineated four characteristics of the teachers' understanding with regard to the definition of rational exponent. Firstly, the teachers did not explicitly use the condition of the bases with rational exponents while proving f'(x)=rxr-1. Secondly, few teachers explained the reason why the bases with rational exponents must be positive. Thirdly, there were some teachers who misunderstood the formulae of exponentiation with rational exponents. Lastly, the majority of teachers thought that $(-8)^{\frac{1}{3}}$ equals to -2. Additionally, several issues were discussed related to teacher education for enhancing teachers' knowledge about the definition, features of effective instruction on the formulae of exponentiation and improvement points to explanation methods about the definition and formulae on the current high school textbooks.

A New Type of Differential Fault Analysis on DES Algorithm (DES 알고리즘에 대한 새로운 차분오류주입공격 방법)

  • So, Hyun-Dong;Kim, Sung-Kyoung;Hong, Seok-Hie;Kang, Eun-Sook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.6
    • /
    • pp.3-13
    • /
    • 2010
  • Differential Fault Analysis (DFA) is widely known for one of the most efficient method analyzing block cipher. In this paper, we propose a new type of DFA on DES (Data Encryption Standard). DFA on DES was first introduced by Biham and Shamir, then Rivain recently introduced DFA on DES middle rounds (9-12 round). However previous attacks on DES can only be applied to the encryption process. Meanwhile, we first propose the DFA on DES key-schedule. In this paper, we proposed a more efficient DFA on DES key schedule with random fault. The proposed DFA method retrieves the key using a more practical fault model and requires fewer faults than the previous DFA on DES.

Induced Charge Distribution Using Accelerated Uzawa Method (가속 Uzawa 방법을 이용한 유도전하계산법)

  • Kim, Jae-Hyun;Jo, Gwanghyun;Ha, Youn Doh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.191-197
    • /
    • 2021
  • To calculate the induced charge of atoms in molecular dynamics, linear equations for the induced charges need to be solved. As induced charges are determined at each time step, the process involves considerable computational costs. Hence, an efficient method for calculating the induced charge distribution is required when analyzing large systems. This paper introduces the Uzawa method for solving saddle point problems, which occur in linear systems, for the solution of the Lagrange equation with constraints. We apply the accelerated Uzawa algorithm, which reduces computational costs noticeably using the Schur complement and preconditioned conjugate gradient methods, in order to overcome the drawback of the Uzawa parameter, which affects the convergence speed, and increase the efficiency of the matrix operation. Numerical models of molecular dynamics in which two gold nanoparticles are placed under external electric fields reveal that the proposed method provides improved results in terms of both convergence and efficiency. The computational cost was reduced by approximately 1/10 compared to that for the Gaussian elimination method, and fast convergence of the conjugate gradient, as compared to the basic Uzawa method, was verified.

Extracting characteristics of underachievers learning using artificial intelligence and researching a prediction model (인공지능을 이용한 학습부진 특성 추출 및 예측 모델 연구)

  • Yang, Ja-Young;Moon, Kyong-Hi;Park, Seong-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.4
    • /
    • pp.510-518
    • /
    • 2022
  • The diagnostic evaluation conducted at the national level is very important to detect underachievers in school early. This study used an artificial intelligence method to find the characteristics of underachievers that affect learning development for middle school students. In this study an artificial intelligence model was constructed and analyzed to determine whether the Busan Education Longitudinal Data in 2020 by entering data from the first year of middle school in 2019. A predictive model was developed to predict basic middle school Korean, English, and mathematics education with machine learning algorithms, and it was confirmed that the accuracy was 78%, 82%, and 83%, respectively, in the prediction for the next school year. In addition, by drawing an achievement prediction decision tree for each middle school subject we are analyzing the process of prediction. Finally, we examined what characteristics affect achievement prediction.

Analysis of the Current Status of the AI Major Curriculum at Universities Based on Standard of AI Curriculum

  • Kim, Han Sung;Kim, Doohyun;Kim, Sang Il;Lee, Won Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.25-31
    • /
    • 2022
  • The purpose of this study is to explore the implications for the systematic operation of the AI curriculum by analyzing the current status of the AI major curriculum in universities. To this end, This study analyzed the relevant curriculum of domestic universities(a total of 51 schools) and overseas QS Top 10 universities based on the industry demand-based standard of AI major curriculum developed through prior research. The main research results are as follows. First, in the case of domestic universities, Python-centered programming subjects were lacking. Second, there were few subjects for advanced learning such as AI application and convergence. Third, the subjects required to perform the AI developer job were insufficient. Fourth, in the case of colleges, the ratio of AI mathematics-related subjects was low. Based on these results, this study presented implications for the systematic operation of the AI major education.

An Analysis of Metacognition of Elementary Math Gifted Students in Mathematical Modeling Using the Task 'Floor Decorating' ('바닥 꾸미기' 과제를 이용한 수학적 모델링 과정에서 초등수학영재의 메타인지 분석)

  • Yun, Soomi;Chang, Hyewon
    • Communications of Mathematical Education
    • /
    • v.37 no.2
    • /
    • pp.257-276
    • /
    • 2023
  • Mathematical modeling can be described as a series of processes in which real-world problem situations are understood, interpreted using mathematical methods, and solved based on mathematical models. The effectiveness of mathematics instruction using mathematical modeling has been demonstrated through prior research. This study aims to explore insights for mathematical modeling instruction by analyzing the metacognitive characteristics shown in the mathematical modeling cycle, according to the mathematical thinking styles of elementary math gifted students. To achieve this, a mathematical thinking style assessment was conducted with 39 elementary math gifted students from University-affiliated Science Gifted Education Center, and based on the assessment results, they were classified into visual, analytical, and mixed groups. The metacognition manifested during the process of mathematical modeling for each group was analyzed. The analysis results revealed that metacognitive elements varied depending on the phases of modeling cycle and their mathematical thinking styles. Based on these findings, didactical implications for mathematical modeling instruction were derived.

Effect of visco-Pasternak foundation on thermo-mechanical bending response of anisotropic thick laminated composite plates

  • Fatima Bounouara;Mohamed Sadoun;Mahmoud Mohamed Selim Saleh;Abdelbaki Chikh;Abdelmoumen Anis Bousahla;Abdelhakim Kaci;Fouad Bourada;Abdeldjebbar Tounsi;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.693-707
    • /
    • 2023
  • This article investigates the static thermo-mechanical response of anisotropic thick laminated composite plates on Visco-Pasternak foundations under various thermal load conditions (linear, non-linear, and uniform) along the transverse direction (thickness) of the plate, while keeping the mechanical load constant. The governing equations, which represent the thermo-mechanical behavior of the composite plate, are derived from the principle of virtual displacements. Using Navier's type solution, these equations are solved for the composite plate with simply supported condition. The Visco-Pasternak foundation type is included by considering the impact of the damping on the classical foundation model, which is modeled by Winkler's linear modulus and Pasternak's shear modulus. The excellent accuracy of the present solution is confirmed by comparing the results with those available in the literature. The study investigates the impact of geometric ratios, thermal expansion coefficient ratio, damping coefficient and foundation parameters on the thermo-mechanical flexural response of the composite plate. Overall, this article provides insights into the behavior of composite plates on visco-Pasternak foundations and may be useful for designing and analyzing composite structures in practical applications.

Static bending response of axially randomly oriented functionally graded carbon nanotubes reinforced composite nanobeams

  • Ahmed Amine Daikh;Ahmed Drai;Mohamed Ouejdi Belarbi;Mohammed Sid Ahmed Houari;Benoumer Aour;Mohamed A. Eltaher;Norhan A. Mohamed
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.289-301
    • /
    • 2024
  • In this work, an analytical model employing a new higher-order shear deformation beam theory is utilized to investigate the bending behavior of axially randomly oriented functionally graded carbon nanotubes reinforced composite nanobeams. A modified continuum nonlocal strain gradient theory is employed to incorporate both microstructural effects and geometric nano-scale length scales. The extended rule of mixture, along with molecular dynamics simulations, is used to assess the equivalent mechanical properties of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) beams. Carbon nanotube reinforcements are randomly distributed axially along the length of the beam. The equilibrium equations, accompanied by nonclassical boundary conditions, are formulated, and Navier's procedure is used to solve the resulting differential equation, yielding the response of the nanobeam under various mechanical loadings, including uniform, linear, and sinusoidal loads. Numerical analysis is conducted to examine the influence of inhomogeneity parameters, geometric parameters, types of loading, as well as nonlocal and length scale parameters on the deflections and stresses of axially functionally graded carbon nanotubes reinforced composite (AFG CNTRC) nanobeams. The results indicate that, in contrast to the nonlocal parameter, the beam stiffness is increased by both the CNTs volume fraction and the length-scale parameter. The presented model is applicable for designing and analyzing microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS) constructed from carbon nanotubes reinforced composite nanobeams.

The Relationship between Conservation Reasoning and Functional Prefrontal Lobe in Elementary School Students (초등학교 저학년 학생의 전두엽연합령의 기능과 보존논리 형성과의 관계에 대한 연구)

  • Kim, Young-Shin;Kwon, Yong-Ju;Bae, Yoon-Ju;Jeong, Jin-Su;Jeong, Wan-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.3
    • /
    • pp.417-428
    • /
    • 2004
  • Conservation reasoning makes operational thought possible as a functional tool and it is the essential concept not only in the area of science and mathematics but also in several aspects of daily life. The abilities to solve mathematical problems and that of scientific reasoning and abstract way of thinking depend on whether thereis conservation reasoning or not and they are critical concepts that enables us to confirm the steps of cognitive development. Therefor in the study, we emphasized the issue that is the ways to speed up the scientific era by analyzing the correlation between the formation of conservation reasoning and neuro-cognitive variables. About 50% of 1-3 grade students did not had conservation reasoning skills. The formation of conservations was not linear. Scientific reasoning ability, planing and inhibiting ability were significantly different in levels of conservation, And, conservation reasonings were significantly correlated with cognitive variables. Scientific reasoning and planning ability significantly explained about 20% of the conservation reasoning ability of 1-3 grades.

The Development of a Scale to Measure the Innovation Configurations of STEAM and Analysis of Relationship between the Innovation Configurations and the Usage Levels of STEAM (융합인재교육 실행형태의 측정도구 개발 및 실행형태와 실행수준의 관계 분석)

  • Lee, Jin Suk;Song, Tae Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.6
    • /
    • pp.755-765
    • /
    • 2019
  • This study aims to develop the scales to measure the innovation configurations of Science. Technology, Engineering, Art and Mathematics (STEAM) from the perspective of elementary school teachers and investigates the effect of the innovation configurations and related environmental factors on the usage levels of STEAM based on the newly developed scales for the innovation configurations of STEAM. The scales for the innovation configurations of STEAM are based on analyzing the various previous studies and in-depth interviews and consist of four sub-configurations: The 'Preparation,' 'Design,' 'Implementation,' and 'Evaluation.' The innovation configurations of STEAM was investigated with the developed scales through 266 teachers who are leading STEAM school teachers, are involved in STEAM research group, or are implementing STEAM in general schools. The final 19 questionnaires for the scale of the innovation configuration of STEAM are confirmed with exploratory factor analysis and reliability analysis. In order to examine the relationship between the innovation configurations and levels of use, the direct relationship between four sub-configurations and the usage levels of STEAM and the effect of environmental factors on the innovation configuration and the usage levels of STEAM have been conducted and their interactions are considered. The results show that 'Implementation' in the innovation configurations of STEAM and 'STEAM training experience' are most important factors to improve the usage levels of STEAM for elementary school teachers. It implies that the scales are very helpful in improving as well as figuring out the current innovation configurations of STEAM.