• Title/Summary/Keyword: analogue of Wiener measure

Search Result 33, Processing Time 0.029 seconds

EVALUATION E(exp(∫0th(s)dx(s)) ON ANALOGUE OF WIENER MEASURE SPACE

  • Park, Yeon-Hee
    • Honam Mathematical Journal
    • /
    • v.32 no.3
    • /
    • pp.441-451
    • /
    • 2010
  • In this paper we evaluate the analogue of Wiener integral ${\int\limits}_{C[0,t]}x(t_1){\cdots}x(t_n)d\omega_\rho(x)$ where 0 = $t_0$ < $t_1$ $\cdots$ < $t_n$ $\leq$ t and the Paley-Wiener-Zygmund integral ${\int\limits}_{C[0,t]}$ exp $({\int\limits}_0^t h(s)\tilde{d}x(s))d\omega_\rho(x)$ is the analogue of Wiener measure space.

THE GENERALIZED ANALOGUE OF WIENER MEASURE SPACE AND ITS PROPERTIES

  • Ryu, Kun-Sik
    • Honam Mathematical Journal
    • /
    • v.32 no.4
    • /
    • pp.633-642
    • /
    • 2010
  • In this note, we introduce the definition of the generalized analogue of Wiener measure on the space C[a, b] of all real-valued continuous functions on the closed interval [a, b], give several examples of it and investigate some important properties of it - the Fernique theorem and the existence theorem of scale-invariant measurable subsets on C[a, b].

THE DOBRAKOV INTEGRAL OVER PATHS

  • Ryu, Kun Sik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.1
    • /
    • pp.61-68
    • /
    • 2006
  • In 2002, the author introduced the definition and its properties of an analogue of Wiener measure over paths. In this article, using these concepts, we will derive an operator-valued measure over paths and will investigate the properties for integral with respect to the measure. Specially, we will prove the Wiener integral formula for our integral and give some example of it.

  • PDF

AN ANALOGUE OF WIENER MEASURE AND ITS APPLICATIONS

  • Im, Man-Kyu;Ryu, Kun-Sik
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.5
    • /
    • pp.801-819
    • /
    • 2002
  • In this note, we establish a translation theorem in an analogue of Wiener space (C[0,t],$\omega$$\phi$) and find formulas for the conditional $\omega$$\phi$-integral given by the condition X(x) = (x(to), x(t$_1$),…, x(t$_{n}$)) which is the generalization of Chang and Chang's results in 1984. Moreover, we prove a translation theorem for the conditional $\omega$$\phi$-integral.l.

OPERATOR-VALUED FUNCTION SPACE INTEGRALS VIA CONDITIONAL INTEGRALS ON AN ANALOGUE WIENER SPACE II

  • Cho, Dong Hyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.903-924
    • /
    • 2016
  • In the present paper, using a simple formula for the conditional expectations given a generalized conditioning function over an analogue of vector-valued Wiener space, we prove that the analytic operator-valued Feynman integrals of certain classes of functions over the space can be expressed by the conditional analytic Feynman integrals of the functions. We then provide the conditional analytic Feynman integrals of several functions which are the kernels of the analytic operator-valued Feynman integrals.

THE GENERALIZED FERNIQUE'S THEOREM FOR ANALOGUE OF WIENER MEASURE SPACE

  • Ryu, Kun Sik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.743-748
    • /
    • 2009
  • In 1970, Fernique proved that there is a positive real number $\alpha$ such that $\int_{\mathbb{B}}\exp\{\alpha{\parallel}x{\parallel}^{2}\}dP(x)$ is finite where ($\mathbb{B},\;P$) is an abstract Wiener measure space and ${\parallel}\;{\cdot}\;{\parallel}$ is a measurable norm on ($\mathbb{B},\;P$) in [2, 3]. In this article, we investigate the existence of the integral $\int_{c}\exp\{\alpha(sup_t{\mid}x(t){\mid})^p\}dm_{\varphi}(x)$ where ($\mathcal{C}$, $m_{\varphi}$) is the analogue of Wiener measure space and p and $\alpha$ are both positive real numbers.

  • PDF

STOCHASTIC CALCULUS FOR ANALOGUE OF WIENER PROCESS

  • Im, Man-Kyu;Kim, Jae-Hee
    • The Pure and Applied Mathematics
    • /
    • v.14 no.4
    • /
    • pp.335-354
    • /
    • 2007
  • In this paper, we define an analogue of generalized Wiener measure and investigate its basic properties. We define (${\hat}It{o}$ type) stochastic integrals with respect to the generalized Wiener process and prove the ${\hat}It{o}$ formula. The existence and uniqueness of the solution of stochastic differential equation associated with the generalized Wiener process is proved. Finally, we generalize the linear filtering theory of Kalman-Bucy to the case of a generalized Wiener process.

  • PDF