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THE ARCSINE LAW IN THE ANALOGUE OF WIENER
SPACE

Kun Sik Ryu*

ABSTRACT. In this note, we prove the theorems in analogue of
Wiener space corresponding to the second and the third arcsine
laws in the concrete Wiener space [1,2] and we show that our re-
sults are exactly same to the concrete Wiener case when the initial
condition gives the Dirac measure at the origin.

1. Introduction

The study of Brownian motion started about two hundred years ago,
and the study to Wiener measure space which based on Brownian mo-
tion in mathematical way started around one hundred years ago. Wiener
measure space has been studied widely and profoundly by many math-
ematicians and mathematical physical scientists. In 1939, Levy proved
a beautiful Theorem, say the first arcsine law in the concrete Wiener
space[3], that proportion of time ms, (T (z) < t) = Z2arcsinyt for
t € [0,1], where T (z) = mp({s € [0,1]|z(s) > 0}). Since then, one
proved the second and the third arcsine laws in the concrete Wiener
space that mg, (L(z) < t) = mg,(M;(z) < t) = Zarcsiny/t for ¢ € [0,1]
where L(z) = sup,(g)—o s and M1(z) = supp<,<; 2(s)[1,2,4]. In 2002,
the author and Dr.Im presented the definition of the analogue of Wiener
space, a kind of the generalization of the concrete Wiener space, and its
properties|[5].

In this note, we will prove the theorems in the analogue of Wiener
space, corresponding to the second and the third arcsine laws in the
concrete Wiener space.
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2. The definitions and the basics properties of analogue of
Wiener space

In this section, we introduce some definitions of the analogue of
Wiener space and investigate the basic properties of it which are needed
to understand the next section.

Throughout in this note, let 7' be a positive real number, let C[0, T
be the space of all continuous functions on a closed interval [0, 7] with
the supremum norm |[z|[cc = supscpo 7y [®(t)| and let ¢ be a probabil-
ity Borel measure on R. We define the analogue of Wiener measure
mg on C[0,T] as follows. Let t = (to,t1,ta, - ,t,) With 0 = t5 <
ty <ty < - <tp, <T. Let Jp: Cl0,T] — R"*! be a function with
Jx) = (x(to),z(t1),z(t2), -~ ,z(tp)) and let B; (j = 0,1,2,---,n)
be in B(R). The subsets thl(H?:O Bj) of C[0,T] is called an inter-
val and let M be the smallest o-algebra contains all intervals. For an
interval thl(]_[?zo Bj), let W¢(J{_1(H?:0 Bj) = [, [5, S5, W(n +
Lt ug, u, - 5 Uy )i 1 dty, - - - duyde(ug) where W (n+1; £ ug, g, - - -, )

. 2
= (I[j=, m)exp(—%zyz1 %) Let mg be the Borel

measure on C[0,T] such that for all I, wg(l) = me(I), this measure
is called the analogue of Wiener measure on C[0, 7.

When ¢ is a Dirac measure dg at the origon in R, m, is the concrete
Wiener measure.

From [5], we can find the following lemma.

LEMMA 2.1. Under the notations in above, if f : R"*1 =R is a Borel
measureable fuction then the following equality holds.

/ Falto), 2(tr), x(ts), -, (tn))dimg (2)
co,1)

= f(UO,Uh'U,Q,"' 7un)W(n+1;Eu07u17"' ,’U,n)
Rn+1
([T me) x &) ((ur, uz, -+, un), uo))
7j=1

where if one side integral exists, the both sides integral exist and the
two values are same.
REMARK 2.2.

(1) For a Borel subset B of C[0,T], mg(B) = [g ms,(B)do(u).
(2) mg has no atoms.
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(3) For 0 < s1 < s3 <83 <54 <T, x(s2) —x(s1) and x(s4) — x(s3)
are stochastically independent.

For z in C[0,T], t in [0,7] and a real number b, we let Ty(z) =
inf, (5)=pt, L(x) = sup,(y—ot, Mi(x) = supp<,<;2(s) and 0y(x) = SUpP, (o), (2)5-
Here, Tp is called the first time hits b, L is called the last time of the
last zero before T" and M, is called the running maximum.

A random variable X is said to have the arcsine distribution if it
is supported on [0,7] with the cumulative density function F(t) =

%arcsin\/; (or probability density function f(t) = F'(t) = %)

LEMMA 2.3. (The reflection principle in the analogue of Wiener space)
For a real number a and t in (0,77,

+oo
molalt) <a) = = [ /2 exp(= U8y dudg o).

Proof. By the change of variables theorem, we have

. 2
/ exp(— =10 0,

ms,, (z(t) < a) 5

T Vemt

N2
/ exp( M)du =ms, (z(t) > 2ug — a).
2up—a 2t 0

\/ﬁ

So, we obtain our equality. O

REMARK 2.4. If ¢ is symmetric, that is, ¢(B) = ¢(—B) for all Borel
subset B in R, my(z(t) < a) = mg(x(t) > —a).

LEMMA 2.5. For a real number b and t in (0,T],

o(Ty(z) < 1) \f {/ / el (=) ()

400 (b—ug)/Vt 2
[T el oo + o))

Proof. When b = ug, ms, (Tp(z) < t) = ms, (2(0) = uo) = 1. If
b < wug, by the symmetry of Brownian motion and the intermediate
value theorem, we have
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ms,, (Ty(x) <t) =ms, (To(z) <t x(t ) > b) +m5u (Ty(x) < t,xz(t) < b)
= 2ms, (Th(z) <t,

x(t
(b—up)/
= 2mg, (z(t) <) \/7/ exp —?)d

By the essentially similar method in above, if b > uy,

02
ms,, (Th(z) <t) / exp —?)dv.

Hence, we have our conclusion. O
REMARK 2.6.
(1) When b # ug, fms, (Ty(x) < t) = Sgn(uo—b)\/%exp (= o)y,
(2) Zms, (To(z) < t) = m|u0—b|exp(—W) for t in (0,T).

S0, M, (Ty(x) > ) = ;7L fug — bl exp(— L5225 ds.

(3) If$ = 6y then m¢(Tb( y<t)=1/2 b/\[exp(——)dv, 2y (Th(x) <
t) = \/% exp(—4 ) This is exactly same to the results in the con-

crete Wiener case.

Form [1, 2], we know that for b > 0, 0 < ¢t < T and a Borel subset B
in R,
02

\/27T 2— B 2t

ms, (Tp(x) < t,z(t) € B) — )dv.

Hence, if ug < b, we have

(u — ug)?
T <tz < = Y Vi,
ms, (Th(w) < t,z(t) <a) = \/ﬁ/Q exp(— 5 )du

LEMMA 2.7. Let a and b be two real numbers with a < b and b > 0.

+oo ra u— U 2
Then mg(My(x) > b,x(t) < a) = \/217{/ / eXP(—(%O))

dudd(ue) / /2 exp(— 5 o)’ ———— )dudp(uo)} and my(M;(z) < b,

2(t) < a) = F{/ / exp(— )dudqﬁuo //2

exp(~“= 1D dudg(u, ).




Proof. If ug > b, by the intermediate value theorem, ms, (M(x)
b,x(t) < a) = mg, (2(t) < a). Ifug <b, mg, (Mi(z) <b,2(t) < a)
ms,, (Th(z) < b,z(t) < a). So, we obtain our equality.
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OV

REMARK 2.8.

(1) m¢(Mt( )<bf€()<a)—m¢( (t) < a) = mg(Mi(z )>bx()>

0) = A= [0 S exp(— 5l dubdg(ug)— = [ { fop % ex
(_%)du} do(ug).

(2) For b > 0, mg,(M(z) < b,z(t) < a) = \/ﬁ(ffoo exp(— 57 )du —

i
Jon s exp(— 4 )du). So, Zms,(My(x) < b,a(t) < a) = |/ 2 exp(— 252
2 2(2b—a 2b—a)? .
and %mgo(Mt(:v) <bzx(t) <a)= \[\(/m )exp(—( 2t) ). This

is exactly same to the result in the concrete Wiener case.
Ifug > b, then my, (My(z) < b,x(t) < a) = 0. So, z2m=ms, (My(z)
< b,z(t) < a) = 0 and if up < b then from Remark(2) in above,

2 2(2b—a—u 2b—a—wug)?
5. (Mi(@) < bia(t) < a) = Y2 eote) ep(— ool
If ug ? b, then ms, (My(x) > b,z(t) < a) = mg, (z(t) < a).
S0, go5aMs., (Mi(z) > b,a(t) < a) = 0 and if ug < b then

2 2
%méuo(Mt(x) > b,x(t) < a) = %méuo(Mt(a?) > b, My(z) —

z(t)>b—a) = 7\/5(%%) exp(_i(aerthuo)Q).

. The second and the third arcsine laws in analogue of

Wiener space

In this section, we prove the second and the third arcsine laws in
analogue of Wiener space which are main theorems in this notes.

Let ®(z) = \/% ffooexp(—“;)du. Then the following two equalities
are known facts :

and

+oo (e
/0 exp(— ( + ))du—\ﬁ(ﬂb( )

Foo U+ a)?
/0 uexp(—(;;?)du UQeXp(——) \ﬁamb(——)
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THEOREM 3.1. (The Second Arcsine Laws in Analogue of Wiener

Space)Leta—%anda— S+t For0 <s<T,
+oo a2 ajo u?
/ / (o%exp(— Tcz) + cw/o exp(—;)du)
p(— 5 (o).
exp 205+ 1) Uo

Proof. From Remark (3) in Lemma 2.3, we have

o0 U
——d
\/271'75 / 27‘(’8 fulexp( 23) i

Hence, by the Fubini Theorem, for ug in R,
+00 1 U1 — U 2
exp(— = 10)”
oo V2TS 2s
too (u —u )2 +o00 2
exp(———— ex dttdu
e \/% p( ){ s \/T| 1| p( t) } 1

+o00 1 +o00 uy — a2 U02
= /T_S = (/_OO |ui|exp(— . )exp(—m)dul)dt.

mgu(To( ) >t

ms,, (L(z) <s) = ms,, (To(z) > T — s)duy

Using the equality in above of this theorem,

“+oo 1 +00 ) a2 ajo u2
< = - R
may (L) <9 = [ ([ (een(—gg) oo [ e

U 2
du)exp(—Q(siz_t))dt

Therefore, we have our equality. O

Remark. If ¢ = §g, then putting u = His,

- . o) — +oo 0_2 _ﬁ +oo# _l s/T¥
oL@ <) = [ - a=—f -

T—s TV st3 T Jr_s Vi(s+1) ™ 1—wu)

d 2 . S
u = —arcsing / —.
T T

This is exactly same to the results in concrete Wiener case.

THEOREM 3.2. (The Third Arcsine Laws in Analogue of Wiener
Space) Let 0 < s <t < T witht+ s <T. Then
02

+oo
6(01(z) < s) / ; Wmexp 5y )dr)d¢(u0).
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Proof. Let Xi(z) = x(t + s) — z(s) and Ny (z) = maxo<y<yX (v) for
0<u<T. Then

Nieol@) = ( max a(u+s) = a(s)) = (maxa(u) - a(s

and the following are equivalent :
(a) Or(x) < s (b)Ms(z) = My(x) (c)Mg(x) > Ni—g(x) + x(s).

Hence, for ug in R, b > 0and 0 < s <t < T with t+s < T, by
Remark (3) in Lemma 2.1,
ms,, (Mi(x) <b, Oi(x) <s) = ms,, (Ms(z) < b, M (z) —x(s) > Ni—s(x))
_ ms,,, (¢ > Ni—s(x))
=ms,, (Ms(z)—uo < b—ug, Ms(z)—2(s) > c,c > Nt_s<x))m5u0 c> N ()

=ms,, (Ms(z) < b, Mg(x) — x(s) > c)m(;u0 (¢ > Ni_4(x)).

Therefore, from Lemma 2.4 and the Fubini theorem,

+oo  pooo +oo 92
ma, (M) < bt <9 = [ L[ G, (M) < 0N @)
Jr002(19 +h — Uo)

+o0 +o0
o) > W g, (e > Nyl = [ [T

(b+ h — u0)2 02 /+oo +oo 2
— — dh}dcldb = _
exp( P 2(ﬁ_s>) }dc] ; [0 ﬁmem
C(bte—w) 2 _ /*‘”2 (= u)?
(" (- )au))
du/ exp(——)du)).
(b—u0)y/(t—s) /st 2
400 62
So, ms,, (0:(z) < s) / / 6b6rm§ (My(x) < b,0:(x) < r)db)dr
+o0 _ _ 2
/ / ) _gep(— LU0 gy
\/m 2r
2
_ 2o —)dr.
0o m/( t —r)r 2r
Therefore, we obtain our equality O

REMARK 3.3. If ¢ = 50, then

2
U 2 S
me _L)dr = arcsm\/»
0T t —r) T t
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This is exactly same to the results in the concrete Wiener case.
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