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STOCHASTIC CALCULUS FOR ANALOGUE
OF WIENER PROCESS

MAN KyUu IM AND JAE-HEE KIM

ABSTRACT. In this paper, we define an analogue of generalized Wiener measure
and investigate its basic properties. We define (Ito type) stochastic integrals with
respect to the generalized Wiener process and prove the Itd formula. The existence
and uniqueness of the solution of stochastic differential equation associated with
the generalized Wiener process is proved. Finally, we generalize the linear filtering
theory of Kalman-Bucy to the case of a generalized Wiener process.

1. INTRODUCTION

A generalized Wiener process {A;}+>0 is an additive process with a mean func-
tion o and a variation function 3, i.c., it has independent increments and for any
0 < s <t A~ A, is normally distributed with mean «(t) — a(s) and variance
3(t) — 3(s), where a is a real-valued function on Ry = [0,00) and 3 is a strictly
increasing real-valued function on Ry, see [5, 6]. In gencral, a generalized Wiener
proccess is nonstationary. If the generalized Wiener process {A¢}¢>0 has almost surcly
continuous sample paths, then a and 3 are continuous, see [18].

In the (traditional) It5 calculus and Kalman-Bucy filtering theory [11], the stan-
dard Wicner process (Brownian motion) was used as a noisc process [9, 10, 13, 14].
Recently, the stochastic calculi for several stochastic processes have been developed
with wide applications (see {2, 3, 4, 7, 8, 15]). Also, recently, several attempts to
solve filtering problems of dynamical systems for other noisc processes have been
made in [1, 12].

The purpose of this paper is to develop (Ito type) stochastic calculus for a gen-
cralized Wicner process (Theorem 3.7 and Theorem 4.1) and to extend the linear
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filtering theory of Kalman~Bucy for the standard Wiener process to the casc of a
gencralized Wiener process (Theorem 5.1).
The system process { X () }+>0 and the obscrvation process {Z; }+>0 in our filtering

problem satisfy the following stochastic differential equations:
dX(t) = F(t)X(t)dt + C(t)d A, X(0) = Xo;
(1.1) dZ(t) = G(t) X (t)dt + D(t)dW,, Z(0) =0,

where {A;}i>0 and {Wihi>o are certain generalized Wicner processes with mean
functions a1,y and variation functions 31, S2. By choosing mcan functions and
variance functions the linear filtering problem (1.1) express several types of filtering
problem for Wiener process. More precisely, if a1, as, 8; and 33 arc absolutely
continuous, then the gencralized Wicner processes {A¢}i>0 and {W;}i>o can be
cxpressed by

(1.2) dA; = o (t)dt + /B (t)dW1 s,
(1.3) dWy = ay(t)dt + 1/ B5(t)dWay, Ag = Wy =0,

where {W¢}e>0 and {Wa,}i>0 arc standard Wiener processes. Then the problem
(1.1) is cquivalent to

dX(t) = (F®)X(t) + H(t)) dt + C'(t)dWy,, X (0) = Xo;
(1.4) dZ(t) = (G()X(t) + K (t)) dt + D'(t)dWay, Z(0) =0

for certain functions H, K, C' and D’. The filtering problem (1.4) is a special type
of linear nonstationary filtering problem in [13].

This paper is organized as follows: In Section 2 we define an analoguc of general-
ized Wicner mcasure wg‘s, and investigate the basic properties of wg"‘a. In Section 3
we study the stochastic integrals with respect to the generalized Wiener process and
prove the 1t formula for the generalized Wiener process. In Section 4 we prove the
existence and uniqueness of the solution of a stochastic differential equation associ-
ated with the generalized Wiener process. In Section 5 we study the linear filtering
theory for a generalized Wiener process.

2. ANALOGUE OF GENERALIZED WIENER PROCESS

From the analogue of Wiener space (C[0,T],B(C[0,T]),w,) associatc with a
complex-valued measure ¢ on R [16, 17|, we define an analogue of generalized Wiener
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space C[0, T consisting of Borel the o-algebra B(C[0,T]) and a measure w%? which
is defined by

n

wg.B(E) — /;\I’a,g(umul, c U ) d (H mL) (uy,ug,- - , Un )dp(uo),
j=1
where

. ~1/2
\I/u,g(’u,(), Uy, - ,un) = [H 27‘((,:3(25]‘) — ,B(tj_l)):l
1< - a(t — (uj—1 — a(tj—1)))?
xexp{ QZ ) B(tJ 1) }

J=

1
and a : [0,7] — R is a function, 8 : [0,T] — Ry = [0,00) is an incrcasing
function and E € B(C[0,T]) with
E={xeC[0,T]] (z(to),z(t1), - ,2(ta)) € B,B € BR™" )} .

Here 0 = &g < t;) < -+ < t, = T. The completion of wg‘ﬂ is denoted by the

same notation. Then we obtain the following theorem for an analogue of generalized

Wicner measure w3,

Theorem 2.1. (Wiener Integration Formula) If f : R**! — R is a Borel measur-
able function, then the following equality holds:

/ F(@(to), z(t), -+ »2(tn))dw? (x)
cp,T]

=/ lf(u()aul;“' ,Un)‘I’a.,B(uo,ul,"' 1un)
Rt

d (H mL) (u1,u2, -+, un)de(uo).

j=1
The proof is obvious by applying the change of variable formula.

Example 2.2. Suppose ¢ has a normal distribution with mean «(0) and variance
~3(0). Then we have

(1) For0<s<T, /C[o . x(s)dwg-,ﬁ(x) = a(s).

(2) For 0 < 51,82 < T, / x(sl)x(sz)dwg’B(x) = B(s1 A 82) + a(s1)a(s2). In
cio,T]

particular, / x(sl)2dwg’3(:c) = B(s1) + afs1)*
clo,T)



338 MaN Kyu IM AnND JAE-HEE KiM

(3) For 0 < 51 < 89 < 83 < 84 < T, x(s2) — x(s1) and x(s4) — x(s3) arc
independent. '

Example 2.3. Let 0 < s < T. We define the random variables A, and B, on
C[0,T] by
As(z) = 2(s) —2(0),  Bs(z) = As(z) — (a(s) - (0)),

respectively.  Then A and B, are gencralized Wicner processes (or gencralized

Brownian motion) such that
Ag ~ N(a(s) — a(0). 8(s) — 8(0))
and
B, ~ N(0, 8(s) — 3(0)).
By direct computation, we have
E[l4; — Al') = 3(8(2) — 3(5))” + 6(a(2) — a(s))*(8(¢) — B(s))
(2.5) + (a(t) —a(s))}, 0<st<T.
If there exist % <§<1, % < v < 1 and positive constants C7, Cs such that
18(t) = 3(s) <Cilt—sl°,  |a(t) —a(s)| < Colt— s, 0<s,t<T,

then, by Kolomogolov’s continuity theorem, {At}+>0 has a continuous version. More
gencrally, if a is continuous and 3 is a monotone increasing continuous function, then

the process {A;} has an equivalent continuous process, for the proof we refer to [18].

3. STOCHASTIC INTEGRAL AND ITO FORMULA

Let A; be the o-algebra generated by {As; 0 < s < t}. From now on, we assume
that o is continuous, of bounded variation function and 8 is a monotone increasing
continuous function.

Definition 3.1. Let Mg = M¢[0, T be the class of functions
f:0,T]xC[0,T] — R
such that
(1) the map (t,z) — f(¢,%) is B([0,T]) x B(C[0, T])-measurable,
(2) for cach 0 <t < T, f(¢,-) is A;—measurable,

T
(3) B [ | fearaee + |o4<t>>] <o
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A function ¢ € Mg is called an elementary function if it has the form
(36) ¢(t,.’L‘) = Zej(x)]‘[tjytj-i—l)(t)’
J

where e; is A;;-measurable. For the elementary function ¢ given as in (3.6), we
define

T
(37) / Bt 2)dA(x) = 3 e5(2) (A, — A,
J

(3.8) / ¢(t,2)dBi(z) = e;(z) (By,, — By),

J
/ o(t, x)da(t) = Zej(x (tj+1) — alt;)).
Then it is clearly from Example 2.3 that
(3.9) / o(t, z)dA(x / o(t, z)dBy(x) / o(t, z)da(t).

The integral defined as in (3.7) is called the stochastic integral of ¢ with respect to
the gencralized Wiener process {At}i>o0-

Lemma 3.2. If ¢(t,z) is an elementary bounded function, then we have

E [( /0 ) ¢(t,m)dAt(ac))2} <2 (E [ /0 ) qs(t,x)?ds(t)]
e[ ' st.0Pdalv)] )

where Vi () is the total variation of o over [0, T).
Proof. By direct computation we prove that

(3.10) [(/ (bta:dth)> [/ o(t,x)%dB(t) }

On the other hand, by Cauchy-Schwartz inequality, we have

( / ' ¢(t,x>da(t))2 <(/ ’ ¢(t,x)2dra|(t>) ( / ' d|a|(t>) .

Therefore, by applying (3.9) we obtain the desired inequality. g




340 MAN Kyu Im AND JAE-HEE KM
Proposition 3.3. If f € Mg[0,T), we choose elementary functions ¢, € Mg[0, T
such that

T
(3.11) E{ / |f—¢n32d(.3+|al)(t)] 0 as n—oo

Proof. By applying Lemma 3.2, the proof is a simple modification of the arguments
uscd in Chapter 3 in [14]. 0

Definition 3.4. Let f € 9Mg. The stochastic integral with respect to the process
{A¢}4>0 is defined by

T T
/ f(t,2)dAy(x) = lim / S (t, x)dAs(x),
0 n—o0 Jo

where {¢,} is the sequence of clementary functions in Mg given in Proposition 3.3
and the limit cxists in L2(w3").

Example 3.5. Put ¢n(s,z) = 30 A;(x)1y, 4., ,)(s), where A; = A,. Then we have
B| [0 Ayas+lans)]
tit1
= Z/t [(8(s) = 8(t;) + (a(s) — a(;))*)] (8 + lal)(s)

—0 as n— oo

Henee we have

t t
. . 1l 1 2
/0 AdA = lim A pndAs = Altljrgozj:AjAAj =547 - 5zj:(AA]) :

n—o0

On the other hand, by applying (2.5), for a, = 2o (AB(t;) + (Aalt;))?) we have

2
E [(Z(AA1)2—an) ] — 0 in L2w2®) as n— co.

J
Finally, we prove that

t i
(3.12) / AddA, = lim | ¢ndAs =242 - L se) - 50)).
0 n—0 o 2 2

Proposition 3.6. For any f € M[0,T] we have

(f ' f(t,:v)dAt(m)-z}

E
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<28 [ / Tf(t,m%w(t)] T+ 2V (@B [ / Tf(t,m?dlaut)} .

Proof. By applying Lemma 3.2 and Definition 3.4, the proof is straightforward. O

A diffusion process for a generalized Wiener process {At}t>0 is a stochastic pro-
cess X; of the form

t t
X = Xog+ / u(s, z)ds + / v(s, z)dA;,
0 0

where v € Mg [0,T) and u is As;-adapted with
T
E {/ u(s,x)zds} < 00.
0

Theorem 3.7. (It6 Formula) Let X; be a diffusion process given by
(3.13) dX; = udt + vd As.

Let g € C*(Ry x R). Then Y; = g(t, Xt) is again a diffusion process and satisfies
the following Stochastic differential equation:

_Og dg 18%(t, X;) 2
(314) dY; = &—(t, Xt)dt + 5;(15, Xt)dXt + —2-——5;5—‘— (dXt) ,

where (dX;)? = (dX;)(dX;) is computed according to the rules:

dt-dt=dt-dA,=dA,-dt =0,  dA; dA; = d3(t).

Proof. The proof is a simple modification of the arguments used in the proof of
Theorem 4.1.2 in [14]. Here we prove only the case of g, 8g/0t, 8g/0z, 8%g/0x? arc
bounded, and u,v are elementary. From (3.13) and (3.14), we have

‘(09 B9  18% ,, " g
N _ og , 99 2v9 ——vdAs.
9(t, X;) — g(0, Xo) /0 (m + 6mv + 3 8z2v 8 (s)) ds +/0 awv

Therefore, Y; = g(t, X;) is a diffusion process. By applying Taylor’s theorem we

have
o(t, Xe) = 9(0.X0) + 3 (%’At,- +2Ax,+ %gfx—i(Ath)Q +2Z;+ Rj)
j
with
= %%—i—g(Atj)z + %%AthAtj + %%Atgﬁxtﬂ
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where At; =t;11 —t;, AX, = Xt;,, — Xt; and R; = o(]At;)?, |AX:, [2) for any j.
If At; — 0, we can casily show that Z; — 0 and

g tag dg / t og

—=At; — | =2 —=AX;, — | = s )d X
(3.15) z j 5 Ot /O (s, X,)ds, 2 : A, i 7a (5, X,)
in L?(w§ a6 )- On the other hand, since u and v arc clementary, we have

(AX,)? = Z P9 (2(A4)? + 2uy0, AL, 4, + 02 2(AA,)?).

d2? dx?

Also, if Atj — 0, we can casxly show that

2 2
E [( g ~u(Aty) ) } -0, E [(Z%ujvjAtjAAj) J — 0.
J

By dircct computation we prove that

E [ (Z e; [(A4;)? - Aﬂ(tj)]) } —0

as At; — 0, where e; = e(t;), e(t) = (8%g(t, X;)/0x%) v(t,x)2. Hence, we prove
that
62

(3.16) o 25

AXj) —>/ 2(s Xs)v(s,z)2dB(s)
in L2(wg'ﬁ) as At; — 0. Finally, since Zj R; — 0, we prove that

t t F]
ot Xe) — 9(0, Xo) = / 99 (5, X,)ds + / 29 (s, X,)dX,
0
32
2(.s X )v(s, x)%dB(s)
which is equivalent to (3.14). 0
By applying It6 formula, we solve Example 3.5.

Example 3.8. Let X; = A;. Then by applying the 1t6 formula to the process
= A?/2, we have
1
dY; = AdA; + §d'8(t)

which is equivalent to (3.12).
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4. STOCHASTIC DIFFERENTIAL EQUATIONS
For cach function f : [0,T] x C[0,T] — R satisfying the conditions (1) in Defini-
tion 3.1 and f(t,-) is By(the o-algebra generated by {Bs; 0 < s < t})-measurablec
for cach 0 < t < T with
T
E U f(t,x)Qd,B(t)} < o0,
0
the integral M; = fot f(s,z)dBs(z) is well-defined as following:
t t
| #(s.2)aB.) = lim [ (s, )B4 o),
0 n=oe Jo

where the limit exists in L2(w%”) and fot on (8, z)dBg(z) is defined as in (3.8) for the
clementary function ¢, given by

dn(t ) = Z ()1 ,,)(t)
J

in which e; is B;,~mcasurable. Then by applying (3.10) we can casily prove that

([mmwmf

and the process {M; }o<i<7 is a martingale with respect to the filtration B;.

(4.17) E

=Euﬁmwwm]

For the notational convenience, the identity function on R is denoted by p.

Theorem 4.1. Let T > 0 and b(-,-) : [0,T] x R - R, o(-,-) : [0,T] x R — R be
measurable functions satisfying

(4.18) |b(t, )| + |o(t, z)| < CE)(1 + |z)), zeR, tel0,T]
and
(4.19) |b(t,z) — b(t,y)| + |o(t,x) — o(t,y)| < Ct)|x -y, r,y€R, te€[0,T]

for some measurable function C € L*®[0,T). Let Z be a random variable which is
independent of the o-algebra A, generated by {A,; s > 0} and such that E[|Z]?] <
0o. Then the stochastic differential equation

(420) dXt = b(t, Xt)dt + O'(t, Xt)dAt, XO = Z, 0 S t S T
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has the a unique t-continuous solution X; with the property that X; is adapted to
the filtration AtZ generated by Z and A; and

T
(4.21) E { / X2 d(p + 8 + |a|)(t)} < 0.
0
Proof. Uniqueness. Lect X, and Y; be solutions of (4.20) satisfying (4.21). Put

a(s) = b(s, Xs) — b(s,Ys) and 4(s) = o(s,Xs) — o(s,Y,). Then by applying (4.19)
and Proposition 3.6 we have

E(X; - Y[’ =E [(/Ota(s)ds + /Ot’Y(s)dAs)2
( /0 t a(s)ds)2 +2E [ ( /0 t ~,(s)dAs)

<Ice. [ "E[[X. - Ya[?1d (2Tp + 43 + 4vT (@)lal) (5)

2
<2E

Therefore, by the Gronwall’s inequality we prove that
(4.22) E|X: - Y’ |=0, 0<t<T.

Hence Xi(z) = Yi(x) a.c. = in C[0,T).
Ezistence. Let’s define Yt(o) = Xp and Yt(k) inductively as following:

t 1
(4.23) Y = Xo + / b(s, Y{P)ds + / o(s, YF))dA,.
0 0

In fact, for any £ =0,1,2,--- , by applying Proposition 3.6 and (4.18), we have

B “Yt(k+l)’2]

<3E(|Xof?) + 3E [(/Ot b(s,ys(k))ds> 2} +3E [(/Otg(s,YS(k))dAs>2]

<3E(]X0|?) + 3tE [ /0 t b(s,Ys(’“))zdsJ +6E [ /0 t a(s,ys<’f>)2d,3(s)J

6V (E [ / t a(s,Ys"“’)zdlal(s)]
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and so we have
]
< 3Bl1%of) + 3ulC1E ([ i+ 1Y s )
volctz, ([ B+ O
o @ICI ([ B0+ OP)dalis)

< 3E[|1Xof*] + 3K, (/Ot(l +ENY P P)d(p + 8+ lal)(3)> )

where Ky = ||C||%, max{3T, 6,6V (a)}. Therefore, we can easily sec that for any
k=0,1,2,---, o(s, Ys(k)) € Mg[0,7] and so the integrals in the right hand side of
(4.23) is well-defined. On the other hand. by applying Proposition 3.6 and (4.18),
we have :

E “th _ Yt(oﬂ

<9E [(/Ot b(s,XO)ds)2 +9E [(/:o(s, Xo)dAS>2

< 2TE [ /0 t b(s,Xo)zds] +4E [ /0 t a(s,Xo)QdB(s)}

+4VT(a)E [ /0 o(s,X0)2d|a|(s)]
< KE[(1+ | Xo|?)]H(¢),

where Ky = ||C||2, max{2T, 4,4V (o)} and H(t) = fot d(p + 8 + |a])(s). Now, we
put

a(s, k) = b(s, Y®) — b(s, YD), A(s,k) = o(s,YP) — o(s, YD)

Then, by similarly arguments using Proposition 3.6 and (4.19), we have
2 t 1
E UY}’““‘” - Yt"“)l } < 9TE [ / a(s,k)zds] +4E { / ’y(s,k)2d3(s)]
0 0
t
4V @B | [ (s k7 dlal(s)
0

t
< K, / E[Y® — vEDPld(p + 8+ |af)(s).
0
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Thercfore, for any k=0,1,2,---, we have
2 KoH(t))*
Note that

T
sup [¥ 44— v 8] < [ (s, k)lds + sup
0<i<T 0 0<t<T

¢
/ v(s, k)dBs
0

+ /0 " (s, B)ldlal(s).

Hence by the martingale incquality and the Chebychev inequality we have

p { sup \Yt(k+1) _ Yt(k)\ S 3—1{‘

0<t<T

<P [(/Ot |a(s,l~c)|als>2 > 3‘2('““)}

t
+P [ sup / 'y(s,k)st‘ > 3_(’““)}
0 0

<t<T

T
, ol(s —(k+1)
2| ["htebidal(s) > 54|
T T
< g2+ / Ella(s, k)[*]ds + 32*+D / E[|v(s, k)/*]d8(s)
0 0
T
T BT () / E[}y(s, k)[2]d|a|(s)
0

T
<FEVRICIL [ BIYE - YE DR+ 5+ lal)(s)
32(’°+1)K§“1H(T)k

k! ’

where K3 = [|C||2, max{T’ 1, Vi¥(a)}. Therefore, by the Borel-Cantelli lemma, we
prove that ‘

< K3E[(1 + X0|?)

P [ sup lYt(Hl) - Yt(k)‘ >37%  for infintely many k} =0.
0<¢<T

Hence, for almost all z there exists kg = ko(z) such that

sup lYt(kH)(ac) - Yt(k) (:v)t <37% for k> k.
0<i<T
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Thercfore, the sequence

n—1
k k
@) =Y %%) + Y (v @) - v @)

k=0
is uniformly convergent in [0, T] for almost all z and the limit is denoted by Xi(z).
Then, since Y;(n) () is t-continuous for any n and almost all z, X; is t-continuous
for almost all z. Morcover, since Yt(") is .A,Z measurable for any 0 <t < T and any
n, X; is .AtZ mcasurable. Next, we note that for m > n > 0 we have by (4.24)

E “Y‘"‘) A 2] e mf ”Y(k“’ ~y®
t t = t ¢
k=n

L2(wd?)

00 k11/2
< VT Iy [

k=n

— 0

as n — oco. Therefore, {Yt(")} converges to a limit Y; in Lz(wg’s). Then a subse-
quence of Yt(n) (z) converges z-pointwise to Y;(z) and so we have ¥; = X, almost
surely. In particular, X; satisfy (4.21) and is adapted to the filtration A¥ gencrated
by Z and A;. Since Yt(n) (r) — Xi(z) uniformly in ¢t € [0,7] for almost all z as
n — 0o, by Fatou lemma we have

E [ /0 X YR+ 31 |a!><t>}

T
< limsupE [/ |Yt(m) - Yt(")|2d(p + 8+ Ia[)(t)]
0

m—oo

—0

as n — oo. It follows by Proposition 3.6 and (4.19) that
/0 ta(s,Ys("))dAs — /0 t o(s, Xs)dA,
and by the Holder inequality that
/Ot b(s,Y™)ds — /Ot b(s, Xs)ds
in Lz(wg"3 )- Therefore, taking the limit of (4.23) as n — oo we prove that
Xi=Xo+ /: b(s, Xs)ds + /Ota(s,Xs)dAs

which is equivalent to the stochastic differential equation (4.20). O
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Example 4.2. Consider the following stochastic differential equation:
dXt - be,dt + O‘XtdAt,

where b and o arc some constants. By applying the Ité formula (3.14), we have

X; = XgeoArtbt- $02(3(t)—B(0))

which is called the geometric generalized Wiener process.

5. STOCHASTIC LINEAR FILTERING

Supposc that the system process {X;}i>0 and the observation process {Z;}i>0

satisfy the following stochastic differential cquations:
dXt = F(t)det + C(t)dAt;

(5.25) dZ; = G(t) X dt + D(t)dW,, Zy =0,
where F, G, C and D are rcal valued functions and bounded on bounded intcrvals.
Morcover, D # 0 and 1/D is bounded on bounded intervals. We assumec that
{At}t>0 and {W;};>0 arc independent gencralized Wiener processes of which the
mean functions and the variance functions are aj. a2 and 31, 32, respectively, where
a1, ag arc of bounded variation functions and 8;, 3> arc absolutely continuous with
35(t) > 1 for any t > 0. We assume that |as| is absolutely continuous with respect
to 8y with d|as|(t)/dB2(t) > 1 for any ¢t > 0. We also assume that X is normally

distributed and independent of {A;}, {W;}.
Let G; be the o-algebra generated by {Zs;0 < s < t} and let

Z={Y:;Ye L2(u)g'[j )} and Y is G;—measurable}.

Then filtering problem is to find )?t satisfying that

(1) )?t is Gi-measurable;
2) X, is the best approximation of X; in the following sense:

E Dxt - )?tﬂ = inf{E [|Xt - Y|2] Y € 2.

Now, we solve the filtering problem by using similar arguments in [14]. Let £; =
L4(Z) be the closure in L2(w2”) of

{eco+er1Zy, + - +exZyy, ;0<t <L, ¢j €R}
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and lct Pr, be the orthogonal projection from L? (wf;”g ) onto £¢. Then from Theorem
6.1.2 and Lemma 6.2.2 in [14] we have

(5.26) X; = Pz,(X;) = B[X4|G/] = Pr,(Xy).

Notc that dW; = das(t) + dBy, for some generalized Wiener process { By }+>0 with
mcan 0 and variance function 3. Therefore, for any f € L%([0,T].dB2(t)), since
{X¢} and {Bs;} arc indepcndent, by (3.9), (5.25) and the by It6 isometry we have

(£ )

=E

(f Cwewxas [ 70DOde) 2}

4 [ / i f(t)ZDmstz(t)] .

On the other hand, since 35(t) > 1 and d|ag|(t)/d32(t) > 1, by the Cauchy-Schwartz
inequality we have

T T 2
E [( / FO)G(t) Xedt + / f(t)D(t)daz(t)>
0 0
for some constant A; which is independent of f. Therefore, we obtain that

4o /0 U f02 s, <E [( /0 i f(t)dzt)2] <Ay /0 " 02 a5

for some constant Ag and A, which are independent of f, in fact, D(t)? > A for
any 0 <t <T. Then we have

T
< A /0 F(2)? dBs(2)

T
(5.27) Lp(Z) = {co +/0 f()dZ;; co € R and f € L3([0, T],dBQ(t))}

The proof is similar to the proof of Lemma 6.2.4 in [14].

Now, we define the innovation process N; as following:
Ny =27, - fo " EX ds - / D(s)as(s),  GX. = Pr.(G(s)Xs) = G(s)R,
which is equivalent to the dif;)erentia.l form:
dN; = G(t)(X; — X;)dt — D(t)das(t) + D(t)dW;
= G(t)(X; — X;)dt + D(t)dBa,.

Then we can show that {N;}+>0 is a Gaussian process and N; has orthogonal incre-
ments. Morcover,

E[N/] = /Ot D(s)dBa(s),  LoN)=LZ), 120,
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for the proof, scc the proof of Lemma 6.2.5 in [14].
Define process { Rt }>0 by

dRy = ——dNy, t>0, Ry=0.

D(t)
Then {R;}¢>0 is a gencralized Wiener process with mean 0 and variance function s,
i.c, for any s,t > 0, R; has continuous samplc paths, R; has orthogonal increments,

R, is Gaussian random variable and
E[R/] =0, E[R:R,] = min{8(s), 8(t)} — 3(0).
Since £4(N) = L4(R), we have
Xy = Pr,g)(Xe).
Thercfore, by (5.27) for cach ¢t > 0

(5.28) X, = co(t) + /0 t g(s)dR,
for some g € L*([0,t],dB2(s)) and ¢o(t) € R. Hence by (5.26),
co(t) = E[X¢] = E[X,].

Since X; — X; and fo s)dR, arc orthogonal for all f € L?([0,t],d3(s)), by Ité
isometry we have

B[x [ ear) =u %, [ tf(S)dRsJ = [ srr(syisato)

In particular, by taking f = 1 [0, 0 <7 <t, we have

g(r) = t )gr / g(s)ds = 5;?) %E [X:R:].
Thercfore, by (5.28)
(5.29) X, = E[X,) + / t ,LQE[XtRS]dRS.
o A5(r)0s
On the other hand, from (5.25) by using the Ité formula we obtain that

(5.30) X, = exp ( /0 t F(s)ds) Xo+ /O t exp ( / t F(u)du) C(s)dAs

More genérally, for any 0 < r <t we have

(531) X, =exp ( / t F(s)ds) X, + / “exp ( / t F(u)du) C(s)dA,s
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Theorem 5.1. The solution X; = E[X:|G:] of the linear filtering problem (5.25)
satisfies the follownng stochastic differential equation:

dX; = C(t)day(t) — mdag(t) + (F(t) - M) X,dt

55(t)D(?) B D(t)
G()5()
(5.32) OO
where Xy = E[Xo| and S(t) = E[(X; — X,;)?] satisfies the following Riccati equation:
2
(5.33) L= CHOB0) + 2R OS(0) - 5D S

S5(0) = E[(Xo - E[Xo))?).

Proof. To obtain the stochastic differential equation (5.32) for )/(:,,, we start with the
formula from (5.29)

~ t 1 0
(5.34) Xt = E[Xt] +/0 h(s,t)dRs, h(S,t) = %%E[XtRSL

where

P G(r) o ~ -~
5. = r =X, — X,.
(5.35) R, /o D(T)errthgys, X

On the other hand, since X; and By arc independent and E[By,] = 0, from (5.35)
we obtain

(5.36) E[X,R,] = /0 ) gEgE[XtX'T]dr.
Since

C E K / t exp ( / t F(u)du) C(s)dAs) )?} =0
and

E[)?)?T} =0, 0<r<T,
by using the formula (5.31) for X; we have

(537)  E[X:X.]=oxp ( / t F(v)dv) E[X,X,] = oxp ( / t F(v)dv) S(r),

- ~\2
where S(r) = E[X?| =E [(Xr = Xr) } Therefore, by (5.36) and (5.37)

E[X,R,] = /0 ) %cxp ( / t F(v)dv) S(r)dr.
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Hence by (5.34) we obtain that

(5.38) h(s,t) = zgs By ( / F(v)d )
Therefore, by (5.34) and (5.38), we have

~ t
dX; = deo(t) + h(t, t)dR, + ( / %h(s,t)dRs) dt
0

s GBSO S
— deo(t) + (t)D()dR,+( /O B ,t)dRé) F(t)dt

and cquivalently, since deg(t) = dE[X;] = F(t)cp(t)dt + C(#)da; () from (5.30),

Gt)S(t)

dX, = deo(t) + F(t) - (X~ co(t))dt + 3@)D(t)

dR;

= F(t))?tdt + C(t)dan (t) + %d}?t

Finally, since

dR, = dZ; — G(t) X,dt — D(t)dag(t)] ,

D(t) [
we obtain the stochastic differential equation (5.32).
Now, we obtain the equation (5.33). Since X; — )?t and )’ft arc orthogonal, from

(5.34) we have
S(t) = E {(xt - )?t)2]
—E [x7] - B[X?]
=U(t) - E[X{]% - /0 t h(s,t)2d8a(s),

where U(t) = E[X?]. On thc other hand, from (5.30) we have

U(t) = exp (2 fo t F(s)ds) E[X2]
+ 2exp (/Ot F(s)ds) E[Xy] /Ot exp (/St F(u)du) C(s)dai(s)

+ [/ot exp (/St F(u)du) C’(S)dOtl(S)]2
+ [/Ot exp (2 /st F(u)du) C*(s)dB: (3)] .
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Therefore, by direct computation we prove that

dU(t) = (2F(t)U(t) + C%(t)B(t)) dt + 2C(t)E[X¢]da1(t)

and
ds(t)
t
= dU(t) - (h(t,t)23§(t) +2F(t) / h(s,t)*dBa(s) + 2F(t)E[Xt]2> dt
0
— 2C(4)E[X]das (t)
G(t)?
=dU(t) — | 525 St)* — 2F()(S(t) — U(t)) ) dt
)~ (308750 — 2P0 - V()
— 2C()E[X¢]da (t)
G(t)?
= [ C2(t)B1(t) + 2F(1)S(t) — S(t)*) dt
(o +2rwse - 500 s
which is cquivalent to the cquation (5.33). t
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