• Title/Summary/Keyword: analogical thinking

Search Result 43, Processing Time 0.029 seconds

Thomas Young's Problem Solving through Analogical Reasoning in the Process of Light Inference Theory Formation and Its Implications for Scientific Creativity Education (창의적 과학자 토마스 영(T. Young)의 빛의 간섭 이론 형성과정에서의 비유추론을 통한 문제해결과 과학창의성 교육적 함의)

  • Kim, Wonsook;Kim, Youngmin;Seo, Hae-Ae;Park, Jongseok
    • Journal of Gifted/Talented Education
    • /
    • v.23 no.5
    • /
    • pp.817-833
    • /
    • 2013
  • The study aims to analyze Thomas Young's problem solving processes of analogical reasoning during the formation of the interference theory of light, and to draw its implications for secondary science education, particularly for enhancing creativity in science. The research method employed in the study was literature review of the papers which Young himself had written about sound wave and property of light. His thinking processes and specific features in his thought that were obtained through analysis of his papers about light are as follows: Young reconsidered Newton's experiments and observations, and reinterpreted Newton's results in the new viewpoints. Through this analysis, Young discovered that Newton's interpretation about his own experiments and observations was faulty in a certain point of view and new interpretation is necessary. Based on the data, it is hypothesized that colors observed on thin plates and colors appeared repeatedly on Newton's ring are appeared because of the effect of light interference. Young used analogical reasoning during the process of inference of similarity between sound and light. And he formulated an hypothesis on the interference of light through using abductive reasoning from interference of water wave, and proved the hypothesis by constructing an creative experimental device, which is called a critical experiment. It is implicated that the analogical reasoning and experimental devices for explaining the light interference which Young created and used can be utilized for school science education enhancing creativity in science.

The Effect of an Instruction Using Analog Systematically in Middle School Science Class (중학교 과학 수업에서 비유물을 체계적으로 사용한 수업의 효과)

  • Noh, Tae-Hee;Kwon, Hyeok-Soon;Lee, Seon-Uk
    • Journal of The Korean Association For Science Education
    • /
    • v.17 no.3
    • /
    • pp.323-332
    • /
    • 1997
  • In order to use analog more systematically in science class, an instructional model was designed on the basis of analogical reasoning processes (encoding, inference, mapping, application, and response) in the Sternberg's component process theory. The model has five phases (introducing target context, cue retrieval of analog context, mapping similarity and drawing target concept, application, and elaboration), and the instructional effects of using the model upon students' comprehension of science concepts and motivation level of learning were investigated. The treatment and control groups (1 class each) were selected from 8th-grade classes and taught about chemical change and chemical reaction for the period of 10 class hours. The treatment group was taught with the materials based on the model, while the control group was taught in traditional instruction without using analog. Before the instructions, modified versions of the Patterns of Adaptive Learning Survey and the Group Assessment of Logical Thinking were administered, and their scores were used as covariates for students' conceptions and motivational level of learning, respectively. Analogical reasoning ability test was also administered, and its score was used as a blocking variable. After the instructions, students' conceptions were measured by a researcher-made science conception test, and their motivational level of learning was measured by a modified version of the Instructional Materials Motivation Scale. The results indicated that the adjusted mean score of the conception test for the treatment group was significantly higher than that of the control group at .01 level of significance. No significant interaction between the instruction and the analogical reasoning ability was found. Although the motivational level of learning for the treatment group was higher than that for the control group, the difference was found to be statistically insignificant. Educational implications are discussed.

  • PDF

The Relationships among Learners' Cognitive Variables, Motivational Variables, and Conceptual Understandings in Learning with Analogy (학습자의 인지 및 동기 변인들과 비유를 통한 개념 이해도의 관계)

  • Noh, Tae-Hee;Lim, Hee-Yeon;Kim, Chang-Min;Kang, Suk-Jin
    • Journal of The Korean Association For Science Education
    • /
    • v.19 no.3
    • /
    • pp.471-478
    • /
    • 1999
  • In this study, the relationships among learners' cognitive variables, motivational variables, and conceptual understandings in learning with analogy were investigated. The instruments regarding analogical reasoning ability, field dependence-independence, mental capacity, and logical thinking ability were administered. Some subtests (self-efficacy, expectancy, self-concept of ability, and value) of the Patterns of Adaptive Learning Survey were administered. After students learned with a worksheet that included analogy, a conception test regarding 'stoichiometry that included limiting reagent' was also administered. It was found that learners' conceptual understandings were significantly correlated with the logical thinking ability and the field dependence-independence among the cognitive variables, and the self-efficacy and the self-concept of ability among the motivational variables. The multiple regression analysis of the cognitive variables on conceptual understandings revealed that the logical thinking ability was the most significant predictor. The field dependence-independence also had predictive power. In the analysis of the motivational variables, the self concept of ability was the only significant predictor.

  • PDF

A Design of Teaching Unit on Series of Number Sentences with Patterns. (규칙성이 있는 수식을 소재로 한 교수단원 설계 연구)

  • 박교식
    • School Mathematics
    • /
    • v.4 no.2
    • /
    • pp.297-316
    • /
    • 2002
  • In this paper, a teaching unit on series of number sentences with patterns is designed according to Wittmann's perspectives. In this paper, series of number sentences wish patterns means number sentences in which some patterns are contained. especially, seven kinds of number sentences wish patterns are offered as basic materials, and fifteen tasks based on these basic materials are offered. These tasks are for ninth grade students and higher grade students. These tasks heap students to recognize patterns, and to understand mechanism underlying in those patterns by looking for patterns and proving whether these patterns are generally hold. As working on these tasks, students can reinforce meaning of algebraic expression, its manipulation, and concept of number series. Students also can reinforce mathematical thinking such as analogical thinking, deductive thinking, etc. In this point, this teaching unit reveal important objectives, contents, and Principles of mathematics education. This teaching unit can also be rich sources for student's activities. Especially, for each task's level is different, each student's personal ability is considered fully. Since teachers can know mathematical facet, psychological facet, and didactical facet holistically, this teaching unit can offer broad possibilities for experimental studies. SD, this leaching unit can be said to be substantial. In this paper, this leaching unit is not applied in classroom directly. Actually such applying in classroom is suggested as follow-up studies. By appling this teaching unit in various classroom, some effective informations for teaching this teaching unit and some particular phenomenons in those teaching processes can be identified, and this teaching unit can be revised to be better one.

  • PDF

Mathematical Thinking of Sixth-Grade Gifted.Normal Class Students in the Equal Division Process of Line Segments (선분의 등분할 작도에 나타나는 6학년 영재.일반 학급 학생들의 수학적 사고)

  • Yim, Young-Bin;Ryu, Heui-Su
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.15 no.2
    • /
    • pp.247-282
    • /
    • 2011
  • In the elementary school mathematics textbooks of the 7th national curriculum, just simple construction education is provided by having students draw a circle and triangle with compasses and drawing vertical and parallel lines with a set square. The purpose of this study was to examine the mathematical thinking of sixth-grade elementary school students in the construction process in a bid to give some suggestions on elementary construction guidance. As a result of teaching the sixth graders in gifted and nongifted classes about the equal division of line segments and evaluating their mathematical thinking, the following conclusion was reached, and there are some suggestions about that education: First, the sixth graders in the gifted classes were excellent enough to do mathematical thinking such as analogical thinking, deductive thinking, developmental thinking, generalizing thinking and symbolizing thinking when they learned to divide line segments equally and were given proper advice from their teacher. Second, the students who solved the problems without any advice or hint from the teacher didn't necessarily do lots of mathematical thinking. Third, tough construction such as the equal division of line segments was elusive for the students in the nongifted class, but it's possible for them to learn how to draw a perpendicular at midpoint, quadrangle or rhombus and extend a line by using compasses, which are more enriched construction that what's required by the current curriculum. Fourth, the students in the gifted and nongifted classes schematized the problems and symbolized the components and problem-solving process of the problems when they received process of the proble. Since they the urally got to use signs to explain their construction process, construction education could provide a good opportunity for sixth-grade students to make use of signs.

  • PDF

A Study on the Comparison Italian Contemporary Architecture and the Minimalism Since Neo-Rationalism (신-합리주의 이후 이탈리아 현대건축과 미니멀리즘의 비교연구)

  • 임종엽
    • Korean Institute of Interior Design Journal
    • /
    • no.17
    • /
    • pp.150-156
    • /
    • 1998
  • We found the similarities and differences it the works of Italian Architects especially in 1960s Neo Rationalism and also in the products of inclination of contemporary Minimalism. Based on the moderate application of traditional architectural language and on typological prototype the Italian Architects pursued inherent logic by which the works came to the composition and association rule that show an extremely moderate expression of a spirit indispensable to Architecture. And they turned down the logic of ergonomics but they searched for the simple and prototypical form that was the architectural language strongly restrictive common and objective all through the abstraction of Architectural elements in their memories. The overcome from the forms and the methodology of thinking contain common types in Contemporary Minimalism. But Contemporary Minimalism rejects fundamentally the analogical interpretation and typological protiotype from the past.

  • PDF

The TRIZ Theory and it′s Application (TRIB이론과 응용)

  • 이장용
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.2
    • /
    • pp.25-31
    • /
    • 2001
  • The TRIZ theory which was invented by Russian scientist Genrich Altshuller provides a systematic methodology for innovative engineering design in place of brainstorming. synectics, analogical thinking, which seeming1y high efficiency are still variations of the trials and errors method. TRIZ theory gives designer the ability to explore design solutions in fields other than his (her) own experience. Among several TRIZ theories, most widely used techniques in engineering field are contradiction theory. Su-Field analysis, physical phenomenon and effect and directed production evolution. which are described in this thesis and its application to conceptual design of high-speed train is performed as a case study of TRIZ theory.

  • PDF

Understanding of Statistical concepts Examined through Problem Posing by Analogy (유추에 의한 문제제기 활동을 통해 본 통계적 개념 이해)

  • Park, Mi-Mi;Lee, Dong-Hwan;Lee, Kyeong-Hwa;Ko, Eun-Sung
    • Journal of Educational Research in Mathematics
    • /
    • v.22 no.1
    • /
    • pp.101-115
    • /
    • 2012
  • Analogy, a plausible reasoning on the basis of similarity, is one of the thinking strategy for concept formation, problem solving, and new discovery in many disciplines. Statistics educators argue that analogy can be used as an useful thinking strategy in statistics as well. This study investigated the characteristics of students' analogical thinking in statistics. The mathematically gifted were asked to construct similar problems to a base problem which is a statistical problem having a statistical context. From the analysis of the problems, students' new problems were classified into five types on the basis of the preservation of the statistical context and that of the basic structure of the base problem. From the result, researchers provide some implications. In statistics, the problems, which failed to preserve the statistical context of base problem, have no meaning in statistics. However, the problems which preserved the statistical context can give possibilities for reconceptualization of the statistical concept even though the basic structure of the problem were changed.

  • PDF

Analysis on the Relationship Between the Construct Level of Analogical Reasoning and the Construction of Explanatory Model Observed in Small Group Discussions on Scientific Problem Solving (과학적 문제해결을 위한 소집단 논의 과정에서 나타난 비유적 추론의 생성 수준과 설명적 모델 생성의 관계 분석)

  • Ko, Minseok;Yang, Ilho
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.2
    • /
    • pp.522-537
    • /
    • 2013
  • This study analyzed the relationship among the construct level of analogical reasoning, prediction and uncertainty, and the construction of an explanatory model that were produced during small group discussions for scientific problem solving. This study was participated in by 8 students of K University divided into 2 teams conducting scientific problem solving. The participants took part in discussions in groups after achieving scientific problem solving individually. Through individual interviews afterwards, changes in their thinking through discussion activities were looked into. The results are as follows: The analogy at the Entities/Attributes level was used to make people clearly understand the characteristics of certain objects or entities in the discussions. The analogy at the Configuration/Motion level that was produced during the discussions ensured other participants to predict the results of problem solving. The analogy at the Mechanism/Causation level changed the structure of problem situations either to help other participants to reconstruct the explanatory model or to come up with a new situation that was never been through before to justify the created mechanism and through this, the case of creating Thought Experiments during the discussions were observed. if looking into the changes of analogies, each individual's analogic paradigm during the discussions were shown as production paradigm, reception-production paradigm, production-reception paradigm, and reception paradigm. The construction and reconstruction of the explanatory model were shown in analogic production paradigm, and in the reception paradigm of an analogy, participants changed their predictions or their certainty.

Effect of Mathematising Learning Using Realistic Context on the Children's Mathematical Thinking (현실적 맥락을 활용한 수학화 학습이 아동의 수학적 사고에 미치는 효과 -초등학교 5학년 도형 영역을 중심으로-)

  • Kim, Yoo-Jin
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.11 no.2
    • /
    • pp.99-115
    • /
    • 2007
  • The purpose of this study was to look into whether this mathematising learning utilizing realistic context has an effect on the mathematical thinking. To solve the above problem, two 5th grade classes of D Elementary School in Seoul were selected for performing necessary experiments with one class designated as an experimental group and the other class as a comparative group. Throughout 17 times for six weeks, the comparative group was educated with general mathematics learning by mathematics and "mathematics practices," while the experimental group was taught mainly with mathematising learning using realistic context. As a result, to start with, in case of the experimental group that conducted the mathematising learning utilizing realistic coherence, in the analogical and developmental thoughts which are mathematical thoughts related to the methods of mathematics, in the thinking of expression and the one of basic character which are mathematical thoughts related to the contents of mathematics, and in the thinking of operation, the average points were improved more than the comparative group, also having statistically significant differences. The study suggested that it is necessary to conduct subsequent studies that can verify by expanding to each grade, sex and region, develop teaching methods suitably to the other content domains and purposes of figures, and demonstrate the effects. In addition to those, evaluation tools which can evaluate the mathematical thinking processes of children appropriately and in more diversified methods will have to be developed. Furthermore, in order to maximize mathematising for each group in each mathematising process, it would be necessary to make efforts for further developing realistic problem situations, works and work sheets, which are adequate to the characteristics of the upper and lower groups.

  • PDF