• Title/Summary/Keyword: anaerobic marine bacteria

Search Result 23, Processing Time 0.03 seconds

Isolation and characterization of anaerobic microbes from marine environments in Korea (한반도 주변 해역으로부터 혐기성 미생물의 분리 및 분리 미생물의 특성 분석)

  • Kim, Wonduck;Lee, Jung-Hyun;Kwon, Kae Kyoung
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.183-191
    • /
    • 2016
  • Marine bacteria have represented unique physiologies and products which are not discovered from terrestrial organisms. There has been great interest to utilize and develop marine bacteria in many industrial sectors. Recently, we isolated and characterized anaerobic bacteria from various marine environments in Korea to search organic acids fermenting strains. From our enrichment performed under anaerobic condition, 65 strains were isolated and identified by the 16S rRNA gene sequence analysis. Among them, eleven strains were selected for phylogenetical and biochemical analysis. All tested strains were affiliated with Class Clostridia except one with Class Bacteroidia. Most of strains produce acetate (6 strains) with butyrate (2 strains) and/or formate (4 strains). Strain MCWD5 transformed 40% of glucose to extracellular polymeric substances. These results indicate that many novel anaerobic microorganisms which have great potential in commercial application are distributed in the marine environments of Korean Peninsula.

Variation in Microbial Biomass and Community Structure in Sediments of Peter the Great Bay (Sea of Japan/East Sea), as Estimated from Fatty Acid Biomarkers

  • Zhukova Natalia V.
    • Ocean Science Journal
    • /
    • v.40 no.3
    • /
    • pp.145-153
    • /
    • 2005
  • Variation in the microbial biomass and community structure found in sediment of heavily polluted bays and the adjacent unpolluted areas were examined using phospholipid fatty acid analysis. Total microbial biomass and microbial community structure were responding to environmental determinants, sediment grain size, depth of sediment, and pollution due to petroleum hydrocarbons. The marker fatty acids of microeukaryotes and prokaryotes - aerobic, anaerobic, and sulfate-reducing bacteria - were detected in sediments of the areas studied. Analysis of the fatty acid profiles revealed wide variations in the community structure in sediments, depending on the extent of pollution, sediment depth, and sediment grain size. The abundance of specific bacterial fatty acids points to the dominance of prokaryotic organisms, whose composition differed among the stations. Fatty acid distributions in sediments suggest the high contribution of aerobic bacteria. Sediments of polluted sites were significantly enriched with anaerobic bacteria in comparison with clean areas. The contribution of this bacterial group increased with the depth of sediments. Anaerobic bacteria were predominantly present in muddy sediments, as evidenced from the fatty acid profiles. Relatively high concentrations of marker fatty acids of sulfate-reducing bacteria were associated with organic pollution in this site. Specific fatty acids of microeukaryotes were more abundant in surface sediments than in deeper sediment layers. Among the microeukaryotes, diatoms were an important component. Significant amounts of bacterial biomass, the predominance of bacterial biomarker fatty acids with abundance of anaerobic and sulfate-reducing bacteria are indicative of a prokaryotic consortium responsive to organic pollution.

Screening and Characterization of Psychrotrophic, Lipolytic Bacteria from Deep-Sea Sediments

  • Zeng, Xiang;Xiao, Xiang;Wang, Peng;Wang, Rengping
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.952-958
    • /
    • 2004
  • Of 23 psychrotrophic bacteria isolated from the west Pacific deep-sea sediments, 19 were assigned to the $\gamma$-Proteobacteria, 3 to the <$\beta$-Proteobacteria, and 1 to the Gram-positive bacteria, as determined by their 16S rDNA sequences. Ten psychrotrophs, affiliated to the Psychrobacter, Pseudoalteromonas, and Pseudomonas genera in the $\gamma$-Proteobacteria group, were screened for lipolytic bacteria. The majority of the lipolytic isolates had growth temperatures between 4-$30^\circ{C}$, and all of them were neutrophilic, aerobic, or facultatively anaerobic, and some were able to produce multiple kinds of ectohydrolytic enzymes. The deep-sea strains Psychrobacter sp. wp37 and Pseudoalteromonas sp. wp27 were chosen for further lipase production analysis. Both strains had the highest lipase production when grown at 10 to $20^\circ{C}$; their highest lipase production occurred at the late-exponential growth stage; and the majority of the enzymes were excreted to the outside of the cells. Lipases from both strains had the same optimal reaction temperature and pH (20-$30^\circ{C}$, pH 7-8) and could retain about 60% of their highest activity at $4^\circ{C}$. Furthermore, SDS-PAGE and an in-gel activity test showed that they had the same high molecular mass of about 85 kDa.

Effects of Yellow Clay on the Production of Volatile Fatty Acids during the Anaerobic Decomposition of the Red Tide Dinoflagellate Cochlodinium polykrikoides in Marine Sediments (해양퇴적층에서 적조생물(Cochlodinium polykrikoides)의 혐기성 분해과정 중 황토가 휘발성 지방산 생성에 미치는 영향)

  • Park, Young-Tae;Lee, Chang-Kyu;Park, Tae-Gyu;Lee, Yoon;Bae, Heon-Meen
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.5
    • /
    • pp.472-479
    • /
    • 2012
  • The formation of volatile fatty acids(VFAs) and changes in pH, oxidation and reduction potential(Eh) and acid volatile sulfide(AVS) with the addition of yellow clay were investigated using microcosm systems to examine the effects of yellow clay dispersion on the anaerobic decomposition of Cochlodinium polykrikoides in marine sediments. The acetate concentration reached a maximum by day 4 and was 1.2-1.8 fold less in the sample treated with yellow clay compared to the untreated sample (224-270 vs. 333 uM). The formate concentration reached a maximum by day 1 and was 1.3-2.8 fold less in the sample treated with yellow clay compared to the untreated sample (202-439 vs. 563 uM). The propionate concentration reached a maximum by day 2 and was 1.5-1.8 fold less in the sample treated with yellow clay compared to the untreated sample (32.6 vs. 57.2 uM). After the amounts of acetate, formate and propionate peaked the levels dropped dramatically due to the utilization by sulfate reducing bacteria. The Eh of the samples treated with yellow clay was similar to the untreated sample on day 0 but was higher in the sample treated with yellow clay(140-206 mV) from days 4 to 17. AVS started to form on day 3 and this was sustained until day 6, and 1.2-2.2 fold less was produced in the sample treated with yellow clay compared to the untreated sample (40.2-69.3 vs. 83.2-93.8 mg/L). Accordingly, during the anaerobic decomposition of C. polykrikoides in marine sediments, yellow clay dispersal seems to suppress the reduction state of Eh and the formation of volatile fatty acids(acetate, formate and propionate) used as an energy source by sulfate reducing bacteria, indicating that this process controls the production of hydrogen sulfide that negatively affects marine organisms and the marine sediment environment.

Characteristics of Microbial Community Structures of the Methane Hydrate Sediments in the Ulleung Basin, East Sea of Korea (동해 울릉분지 메탄 하이드레이트 퇴적토의 미생물 군집 특성)

  • Shin, Ji-Hye;Nam, Ji-Hyun;Lee, Jin-Woo;Lee, Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.50 no.3
    • /
    • pp.191-200
    • /
    • 2014
  • Gas hydrates play a significant role in the global carbon cycle and climate change because methane, a greenhouse gas, can be released from the dissociation of gas hydrate. Anaerobic oxidation of methane (AOM) is an important process that consumes more than 90% of the methane released into the hydrosphere and atmosphere. In this study, the microbial community associated with the methane gas hydrate sediment in the Ulleung basin, East Sea of Korea (UBGH) was analyzed by phylogenetic analysis of the mcrA and 16S rRNA gene libraries. A vertical stratification of the dominating anaerobic methane oxidizer (ANME)-1 group was observed at the surface and the sulfate methane transition zone (SMTZ). The ANME-2c group was found to be dominant in the high methane layer. The archaea of marine benthic group B, which is commonly observed in the AOM region, accounted for more than 50% of the identifications in all sediments. Nitrate reducing bacteria were predominant at SMTZ (Halomonas: 56.5%) and high methane layer (Achromobacter: 52.6%), while sulfate reducing bacteria were not found in UBGH sediments. These results suggest that the AOM process may be carried out by a syntrophic consortium of ANME and nitrate reducing bacteria in the gas hydrates of the Ulleung Basin of the East Sea.

Changes in Phosphorus and Sediment Oxygen Demand in Coastal Sediments Promoted by Functionalized Oyster Shell Powder as an Oxygen Release Compound

  • Kim, Beom-geun;Khirul, Md Akhte;Cho, Dae-chul;Kwon, Sung-Hyun
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.851-861
    • /
    • 2019
  • In this study, we performed a sediment elution experiment to evaluate water quality in terms of phosphorus, as influenced by the dissolved oxygen consumed by sediments. Three separate model column treatments, namely, raw, calcined, and sonicated oyster shell powders, were used in this experiment. Essential phosphorus fractions were examined to verify their roles in nutrient release from sediment based on correlation analyses. When treated with calcined or sonicated oyster shell powder, the sediment-water interface became "less anaerobic," thereby producing conditions conducive to partial oxidation and activities of aerobic bacteria. Sediment Oxygen Demand (SOD) was found to be closely correlated with the growth of algae, which confirmed an intermittent input of organic biomass at the sediment surface. SOD was positively correlated with exchangeable and loosely adsorbed phosphorus and organic phosphorus, owing to the accumulation of unbound algal biomass-derived phosphates in sediment, whereas it was negatively correlated with ferric iron-bound phosphorus or calcium fluorapatite-bound phosphorus, which were present in the form of "insoluble" complexes, thereby facilitating the free migration of sulfate-reducing bacteria or limiting the release from complexes, depending on applied local conditions. PCR-denaturing gradient gel electrophoresis revealed that iron-reducing bacteria were the dominant species in control and non-calcined oyster shell columns, whereas certain sulfur-oxidizing bacteria were identified in the column treated with calcined oyster powder.

Change of Sponge(Axinella sp.)-Associated Bacterial Community during the Cultivation with Hexabromobenzene (Hexabromobenzens 농후 배양에 따른 해면(Axinella sp.) 공생 미생물의 군집구조 변화)

  • Seo, Hyun-Seok;Yang, Sung-Hyun;Bae, Seung Seob;Lee, Jung-Hyun;Kwon, Kae Kyoung
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.76-83
    • /
    • 2014
  • Bacteria associated with marine sponges seemed to be concerned in halogenation/dehalogenation process of natural compounds. In the present study, the effect of hexabromobenzene (HBB) on the community structure of bacteria associated with a marine sponge Axinella sp. from Chuuk State under anaerobic condition was investigated. Regardless of 100 ppm HBB, most of detected microorganisms displayed high similarity with clones reported from coral or sponges. Amongst, Desulfovibrio marinisediminis like clones were dominant. Clones affiliated with Lentisphaerae and Fusibacter paucivorans (Clostridia) were detected at the conditions without HBB but clones affiliated with Vallitalea guaymasensis (Clostridia) increased its proportion with HBB. From these results and previous reports clones affiliated with D. marinisediminis and V. guaymasensis seemed to be concerned in halogenation/dehalogenation process.

Anaerobic dechlorinating enrichment culture on tetrachloroethene (PCE) (PCE 탈염소화를 위한 혐기성배양)

  • Kim, Byung-Hyuk;Baek, Kyung-Hwa;Sung, Youl-Boong;Choi, Gang-Kook;Cho, Dae-Hyun;Oh, Hee-Mock;Kim, Hee-Sik
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.185-185
    • /
    • 2007
  • Starting at the beginning q the 20th century, increasing amounts of tetrach1oroethene (PCE) and trichloroethene (TCE)were manufactured due to the extensive use of these compounds in industry, in the military, and in private households, mainly as nonflammable solvents. This widespread use, along with careless handling and storage, are among the most serious contaminants of soil, sediment and groundwater. Highly chlorinated ethenes are typically not degraded through oxygenation by aerobic bacteria Since complete reductive dechlorination of PCE and TCE to ethene (ETH) has been observed in anaerobic enrichment culture, anaerobic dehalorespiring bacteria have received increased attention in the last decade. Under anaerobic conditions, these compounds con be reductively dehalogenated to less-chlorinated ethenes or innocuous ethene by microorganism through dehalorespiration. We have been studying anaerobic enrichment culture which used lactate as the electron donor for reductive dechlorination of PCE to ETH the anaerobic mixed microbial culture was enriched from the sediment sample taken from site contaminated with PCE. PCE was consistently and completely converted to ethene. In addition, the accumulation of intermediate products such as 1,2-ds-dichloroethene (cis-DCE) and vinyl chloride (VC) was observed in the anaerobic mixed microbial culture. the established dechlorinating enrichment culture was analyzed by DGGE using primers specific to DefrJ1ococcoides 16S rRNA gene sequences. In conclusion, we established the PCE dechlorinating enrichment culture and confirmed the existence of Dehalococcoides in an enrichment culture.

  • PDF

Sulfate Reduction in the Marine Environments: Its Controlling Factors and Relative Significance in Mineralization of Organic Matter (해양환경의 황산염 환원율 조절요인 및 유기물 분해에 있어 황산염 환원의 중요성)

  • 현정호;이홍금;권개경
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.210-224
    • /
    • 2003
  • Sulfate reduction is a microbiological process which occurs ubiquitously in anaerobic marine environment. Sulfate reducing bacteria play a significant role in anaerobic decomposition of organic matter and regeneration of inorganic nutrients which supports the primary production in the water column (i.e., benthic-pelagic coupling) and, in special case, could be responsible for the harmful algal bloom in the coastal marine environment. Summary of the sulfate reduction rates reported in various marine sedimentary environments revealed that supply of organic substrates and presence of various electron acceptors (i.e., $O_2$, NO$_{3}$$^{[-10]}$ , Fe(III) and Mn(IV), etc.) for other aerobic and anaerobic respiration directly affect the sulfate reduction rate and relative significance of sulfate reduction in organic matter mineralization. Significance of temperature, macrophytes and bioturbation is discussed as factors controlling supply of organic substrates and distribution of electron acceptors. Finally, we suggest studies on the anaerobic microbiological processes associated with biogeochemical element cycles in the coastal environments of Korea where massive operation of organic enriched fish cage farm, frequent occurrence of toxic algal bloom and hypoxia and conservation of tidal flat are of major environmental issues.

Isolation, Identification and Optimal Cultrul Condition of Antioxidant Producing Bacterium Isolated from the Marine Sources

  • Kim, Man-Chul;Heo, Moon-Soo
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.343-346
    • /
    • 2005
  • The isolated strain, SC2-1 was Gram-positive, catalase positive, facultatively anaerobic, oxidase negative, motile and small rods. The strain utilized sucrose, dextrose, fructose, mannitol and maltose as a sole carbon and energy source and sodium chloride required for the bacteria growth. The radical scavenging activity of the culture supernatants was determined by DPPH (1,1-diphenyl-2-picrylhydrazyl) method. This bacterium was identified based on cellular fatty acids analysis and 16S rDNA sequencing then named Exiguobacterium sp. SC2-1. The optimum culture conditions for production of antioxidant were $25^{\circ}C,$ pH 7.8 and NaCl concentration were 4%. The modified optimal medium compositions were maltose 2.5% (w/v), yeast extract 1.5% (w/v) and $KH_2PO_4$ 0.05% (w/v). Free radical scavenging activity of under optimal culture conditions were 93%.

  • PDF