Browse > Article

Screening and Characterization of Psychrotrophic, Lipolytic Bacteria from Deep-Sea Sediments  

Zeng, Xiang (Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography)
Xiao, Xiang (Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography)
Wang, Peng (Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography)
Wang, Rengping (Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography)
Publication Information
Journal of Microbiology and Biotechnology / v.14, no.5, 2004 , pp. 952-958 More about this Journal
Abstract
Of 23 psychrotrophic bacteria isolated from the west Pacific deep-sea sediments, 19 were assigned to the $\gamma$-Proteobacteria, 3 to the <$\beta$-Proteobacteria, and 1 to the Gram-positive bacteria, as determined by their 16S rDNA sequences. Ten psychrotrophs, affiliated to the Psychrobacter, Pseudoalteromonas, and Pseudomonas genera in the $\gamma$-Proteobacteria group, were screened for lipolytic bacteria. The majority of the lipolytic isolates had growth temperatures between 4-$30^\circ{C}$, and all of them were neutrophilic, aerobic, or facultatively anaerobic, and some were able to produce multiple kinds of ectohydrolytic enzymes. The deep-sea strains Psychrobacter sp. wp37 and Pseudoalteromonas sp. wp27 were chosen for further lipase production analysis. Both strains had the highest lipase production when grown at 10 to $20^\circ{C}$; their highest lipase production occurred at the late-exponential growth stage; and the majority of the enzymes were excreted to the outside of the cells. Lipases from both strains had the same optimal reaction temperature and pH (20-$30^\circ{C}$, pH 7-8) and could retain about 60% of their highest activity at $4^\circ{C}$. Furthermore, SDS-PAGE and an in-gel activity test showed that they had the same high molecular mass of about 85 kDa.
Keywords
Deep-sea sediment; psychrotroph; phylogenetic analysis; lipase;
Citations & Related Records

Times Cited By Web Of Science : 15  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Bowman, J. P., J. Cavanagh, J. J. Austin, and K Sanderson. 1996.Novel Psychrobacter species from Antarctic omithogenic soils. Int. J. Syst. Bacteriol. 46: 841- 848.
2 Bowman, J. P., D. S. Nichols, and T. A. Mcmeekin. 1997. Psychrobacter glacincola sp. nov., a halotolerant,psychrophilic bacterium isolated from Antarctic sea ice. Syst. Appl. Microbiol. 20: 209- 215.
3 Chuang, Y. C, S. F. Chiou, J. H. Su, M. L. Wu, and M. C. Chang. 1997. Molecular analysis and expression of the extracellular lipase of Aeromonas hydrophila MCC-2. Microbiology 143: 803- 812.
4 Morita, R. Y. H. 1975. Psychrophilic bacteria. Bacteriol. Rev. 29: 144- 167.
5 Philip, J. L., S. Anwar, D. Moreland, C. Natalie, N. Helena, and L. Peter. 2002. Prospecting for novel lipase genes using PCR. Microbiology 148: 2283- 2291.
6 Raguenes, G., R. Christen, J. Guezennec, P. Pignet, and G. Barbier. 1997. Vibrio diabiolicus sp. nov., a new polysaccharide-secreting organism isolated from a deep-sea hydrothermal vent polychaete annelid, Alvinella pompejana. Int. J. Syst. Bacterial. 47: 989- 995.
7 Suzuki, T., T. Nakayama, T. Kurihara, T. Nishino, and N. Esaki. 2001. Cold-active lipolytic activity of psychrotrophic Acinetobacter sp. strain NO.6. J. Biosci. Bioeng. 92: 144-148.
8 Sass, A. M., H. Sass, M. L. Coolen, H. Cypionka, and J. Overmann. 2001. Microbial communities in the chemocline of a hypersaline deep-sea basin (Urania Basin, Mediterranean Sea). Appl. Environ. Microbiol. 67: 5392- 5402.
9 Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
10 Bowman, J. P. 2001. Methods for psychrophilic bacteria, pp. 591- 611. In H. John (ed.), Marine Microbiology. Academic Press, London.
11 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage $T_4$. Nature 227: 680- 685.   DOI   PUBMED   ScienceOn
12 Holmstrom, C. and S. Kjelleberg. 1999. Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol. Lett. 30: 285- 293.
13 Takami, H., A. Inoue, F. Fuji, and K. Horikoshi. 1997. Microbial flora in the deep sea mud of the Mariana Trench. FEMS Microbiol. Lett. 152: 279- 285.
14 Surinenaite, B., V. Bendikiene, B. Juodka, 1. Bachmatova, and L. Marcinkevichiene. 2002. Characterization and physicochemical properties of a lipase from Pseudomonas mendocina 3121-1. Biotech. Appl. Biochem. 36: 47- 55.
15 Barbaro, S. E., J. T. Trevors, and W. E. Inniss. 2001. Effects of low temperature, cold shock, and various carbon sources on esterase and lipase activities and exopolysaccharide production by a psychrotrophic Acinetobacter sp. Can. J. Microbiol. 47: 194- 205.
16 Deming, J. D. 1998. Deep ocean environmental biotechnology. Curr. Opin. Biotechnol. 9: 283- 287.   DOI   PUBMED   ScienceOn
17 Romanenko, L. A., P. Schumann, M. Rohde, A. M. Lysenko, V. V. Mikhailov, and E. Stackebrandt. 2002. Psychrobacter submarines sp. nov. and Psychrobacter marincola sp. nov., psychrophilic halophiles from marine environments. J. Syst. Evol. Microbiol. 52: 1291- 1297.
18 Jaeger, K E. and T. Eggert. 2002. Lipases for biotechnology. Curr. Opin. Biotechnol. 13: 390- 397.
19 Maruyama, A., D. Honda, H. Yamamoto, K. Kitamura, and T. Higashihara. 2000. Phylogenetic analysis of psychrophilic bacteria isolated from the Japan Trench, including a description of the deep-sea species Psychrobacter pacificensis sp. nov. J. Syst. Evol. Microbiol. 50: 835- 846.
20 Ivanova, E. P., I. V. Bakunina, O. I. Nedashkovskaya, N. M. Gorshkova, Y. Y. Alexeeva, E. A. Zelepuga, T. N. Zvaygintseva, D. Y. Nicolau, and V. V. Mikhailov. 2003. Ecophysiological variabilities in ectohydrolytic enzyme activities of some Pseudoalteromonas species, P. citrea, P. issachenkonii, and P. nigrifaciens. Curr. Opin. Biotechnol. 46: 6- 10.
21 Rougeaux, H., J. Guerzennec, R. W. Carlson, N. Kervarec, R. Pichon, and P. Talaga. 1999. Structure determination of the exopolysaccharide of Pseudoaltermonas strain HYD 721 isolated from a deep-sea hydrothermal vent. Carbohydr. Res. 315: 273- 285.
22 Buchon, L., P. Laurent, A. M. Gounot, and J. F. GuespinMichel. 2000. Temperatur e dependence of extracellular enzymes production by psychrotrophic and psychrophilic bacteria. Biotechnol. Lett. 22: 1577- 1581.
23 Teske, A., T. Brinkhoff, D. P. Moser, J. Rethmeier, and H. W. Jannasch. 2000. Diversity of thiosulfate-oxidizing bacteria from marine sediments and hydrothermal vents. Appl. Environ. Microbiol. 66: 3125- 3133.
24 Arpigny, J. L. and K E. Jaeger. 1999. Bacterial lipolytic enzymes: Classification and properties. Biochem. J. 343: 177-183.
25 Corre, E., A. L. Reysenbach, and D. Prieur. 2001. $\varepsilon$-Proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. FEMS Microbiol. Lett. 205: 329- 335.
26 Kasuya, K, H. Mitomo, M. Nakahara, A. Akiba, T. Kudo, and Y. Doi. 2000. Identification of a marine benthic P(3HB)- degrading bacterium isolate and characterization of its P(3HB)depolymerase. Biomacromolecules 1: 194- 201.
27 Martinez, J., D. C. Smith, G. F. Steward, and F. Azam. 1996. Variability in ectobydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea. Aquat. Microb. Ecol. 10: 223- 230.
28 Bull, A. T., A. C. Ward, and M. Goodfellow. 2000. Search and discovery strategies for biotechnology: The paradigm shift. Microbiol. Mol. Biol. Rev. 64: 573- 606.
29 Delong, E. F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89: 5685- 5689.   DOI   ScienceOn
30 Jaeger, K E., S. Ransac, B. W. Dijkstra, C Colson, M. van Heuvel, and O. Misset. 1994. Bacterial lipase. FEMS Microbiol. Rev. 15: 29- 63.
31 Takami, H., K. Kobata, T. Nagahama, H. Kobayashi, A. Inoue, and K. Horikoshi. 1999. Biodiversity in deep-sea sites located near the south part of Japan. Extremophiles 3: 97-102.