• Title/Summary/Keyword: amperometry

Search Result 37, Processing Time 0.026 seconds

Electrochemical Non-Enzymatic Glucose Sensor based on Hexagonal Boron Nitride with Metal-Organic Framework Composite

  • Ranganethan, Suresh;Lee, Sang-Mae;Lee, Jaewon;Chang, Seung-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.379-385
    • /
    • 2017
  • In this study, an amperometric non-enzymatic glucose sensor was developed on the surface of a glassy carbon electrode by simply drop-casting the synthesized homogeneous suspension of hexagonal boron nitride (h-BN) nanosheets with a copper metal-organic framework (Cu-MOF) composite. Comprehensive analytical methods, including field-emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), cyclic voltammetry, electrochemical impedance spectroscopy, and amperometry, were used to investigate the surface and electrochemical characteristics of the h-BN-Cu-MOF composite. The FE-SEM, FT-IR, and XRD results showed that the h-BN-Cu-MOF composite was formed successfully and exhibited a good porous structure. The electrochemical results showed a sensor sensitivity of $18.1{\mu}A{\mu}M^{-1}cm^{-2}$ with a dynamic linearity range of $10-900{\mu}M$ glucose and a detection limit of $5.5{\mu}M$ glucose with a rapid turnaround time (less than 2 min). Additionally, the developed sensor exhibited satisfactory anti-interference ability against dopamine, ascorbic acid, uric acid, urea, and nitrate, and thus, can be applied to the design and development of non-enzymatic glucose sensors.

Performance Improvement of Glucose Sensor Adopting Enzymatic Catalyst bonded by Glutaraldehyde (글루타알데하이드에 의해 결합된 효소촉매를 이용한 글루코스 센서의 성능향상)

  • AHN, YEONJOO;CHUNG, YONGJIN;LEE, KYUBIN;KWON, YONGCHAI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.378-385
    • /
    • 2016
  • In this study, we synthesized a biocatalyst consisting of glucose oxidase (GOx), polyethyleneimine (PEI) and carbon nanotube (CNT) with addition of glutaraldehyde (GA)(GA/[GOx/PEI/CNT])for fabrication of glucose sensor. Main bonding of the GA/[GOx/PEI/CNT] catalyst was formed by crosslinking of functional end groups between GOx/PEI and GA. Catalytic activity of GA/[GOx/PEI/CNT] was quantified by UV-Vis and electrochemical measurements. As a result of that, high immobilization ratio of 199% than other catalyst (with only physical adsorption) and large sensitivity value of $13.4{\mu}A/cm^2/mM$ was gained. With estimation of the biosensor stability, it was found that the GA/[GOx/PEI/CNT] kept about 88% of its initial activity even after three weeks. It shows GA minimized the loss of GOx and improved sensing ability and stability compared with that using other biocatalysts.

Determination of Hydrogen Peroxide on Modified Glassy Carbon Electrode by Polytetrakis(2-aminophenyl)porphyrin Nanowire

  • Jeong, Hae-Sang;Kim, Song-Mi;Seol, Hee-Jin;You, Jung-Min;Jeong, Eun-Seon;Kim, Seul-Ki;Seol, Kyung-Sik;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2979-2983
    • /
    • 2009
  • Nanowires of polytetrakis(o-aminophenyl)porphyrin (PTAPPNW) were fabricated by electrochemical polymerization with the cyclic voltammetric method in anodic aluminum oxide (AAO) membranes. The glassy carbon electrode (GCE) modified by PTAPPNW, single-walled carbon nanotubes (SWNT) and Nafion as a binder was investigated with voltammetric methods in a phosphate buffer saline (PBS) solution at pH 7.4. The PTAPPNW + SWNT + Nafion/GCE exhibited strongly enhanced voltammetric and amperometric sensitivity towards hydrogen peroxide ($H_2O_2$), which shortened the response time and enhanced the sensitivity for $H_2O_2$ determination at an applied potential of 0.0 V by amperometric method. The PTAPPNW + SWNT + Nafion/GCE can be used to monitor $H_2O_2$ at very low concentrations in biological pH as an efficient electrochemical $H_2O_2$ sensor.

Electro-Catalytic Oxidation of Amoxicillin by Carbon Ceramic Electrode Modified with Copper Iodide

  • Karim-Nezhad, Ghasem;Pashazadeh, Ali;Pashazadeh, Sara
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.3
    • /
    • pp.322-328
    • /
    • 2013
  • Copper iodide was employed as a modifier for preparation of a new carbon ceramic electrode. For the first time, the catalytic oxidation of amoxicillin (AMX) was demonstrated by cyclic voltammetry, chronoamperometry and amperometry methods at the surface of this modified carbon ceramic electrode. The copper iodide modified sol-gel derived carbon ceramic (CIM-SGD-CC) electrode has very high catalytic ability for electrooxidation of amoxicillin. The catalytic oxidation peak current was linearly dependent on the amoxicillin concentration and the linearity range obtained was 100 to 1000 ${\mu}mol\;L^{-1}$ with a detection limit of 0.53 ${\mu}mol\;L^{-1}$. The diffusion coefficient ($D=(1.67{\pm}0.102){\times}10^{-3}\;cm^2\;s^{-1}$), and the kinetic parameter such as the electron transfer coefficient (${\alpha}$) and exchange current density ($j_0$) for the modified electrode were calculated. The advantages of the modified CCE are its good stability and reproducibility of surface renewal by simple polishing, excellent catalytic activity and simplicity of preparation.

Amperometric Detection of DNA by Electroreducation of O2 in an Enzyme-Amplified Two-Component Assay

  • Yoon Chang-Jung;Kim Hyug-Han
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.1
    • /
    • pp.44-48
    • /
    • 2004
  • The two-component type enzyme amplified amperometric DNA assay is described to use an ambient $O_2$ of the substrate of the DNA labeling enzyme. Although the assay detects DNA only at > 0.5M concentration, a concentration $\~10^6$ fold higher than the sandwich-type enzyme amplified amperometric DNA assay, it can be run with an always available substrate. The assay utilizes screen-printed carbon electrodes (SPEs) which were pre-coated by a co-electrodeposited film of an electron conducting redox hydrogel and a 37-base long single-stranded DNA sequence. The DNA in the electron conducting film hybridizes and captures, when present, the 37-base long detection-DNA, which is labeled with bilirubin oxidase (BOD), an enzyme catalyzing the four-electron reduction of $O_2$ to water. Because the redox hydrogel electrically connects the BOD reaction centers to the electrode, completion of the sandwich converts the film from non-electrocatalytic to electrocatalytic for the reduction of $O_2$ to water when the electrode is poised at 200 mV vs. Ag/hgCl. The advantage or the assay over the earlier reported sandwich type enzyme amplified amperometric DNA assay, in which the amplifying enzyme was horseradish peroxidase, is that it utilizes ambient $O_2$ instead of the less stable and naturally unavailable $H_2O_2$.

A Study on the Microfabricated Clark-type Sensor for Measuring Dissolved Oxygen (용존 산소 측정용 초소형 Clark-type 센서에 대한 연구)

  • Park, Jung-Il;Chang, Jong-Hyeon;Choi, Myung-Ki;Lee, Dong-Young;Kim, Young-Mi;Pak, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1450-1454
    • /
    • 2007
  • This paper presents a microfabricated Clark-type sensor which exactly can measure dissolved oxygen in the cell containing solution. We designed, fabricated, and characterized a microfabircated Clark-type oxygen sensor for measuring dissolved oxygen. The microfabricated oxygen sensor consists of 3-electrodes on a glass substrate, a FEP (Fluorinated ethylene propylene) oxygen-permeable membrane, and PDMS (Polydimethylsiloxane) reservoir for storing sample solution. Thin-film Ag/AgCl was employed as a reference electrode and its durability was verified by obtaining a stable open circuit potential for 2 hours against a commercial Ag/AgCl electrode and a stable cyclic voltammetry curve. Selectivity, response time, and linearity of the fabricated oxygen sensor were also verified well by cyclic voltammetry and amperometry depending. The fabricated oxygen sensor showed a 90% response time of 40sec and an excellent linearity with a correlation coefficient of 0.994.

Fabrication of Clark-type Sensor for Measuring Dissolved Oxygen Using FEP Membrane (FEP 멤브레인을 이용한 용존 산소 측정용 Clark-type 센서 제작)

  • Park, Jung-Il;Chang, Jong-Hyeon;Choi, Myung-Ki;Lee, Dong-Young;Kim, Young Mi;Pak, Jung Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.276-277
    • /
    • 2007
  • 본 논문에서는 미량의 세포를 포함한 용액 내에서 세포의 산소호흡량을 측정하기 위해 FEP(Fluorinated Ethylene Propylene)를 멤브레인으로 사용한 Clark-type 센서를 제안하였다. 제안된 Clark-type 센서는 3-전극 시스템을 구성하는 유리 기판, 산소를 선택적으로 투과 시키는 FEP 멤브레인과 세포를 담을 수 있는 PDMS reservoir로 구성된다. 산소 센서의 3-전극 시스템에서 작업 전극과 상대 전극으로는 Au, 기준 전극으로는 Ag/AgCl을 사용하였다. 기준 전극은 Ag 전극을 0.1M KCl/Tris-HCl 용액에서 chlorination하여 표면에 AgCl이 형성되도록 하였고, OCP(Open Circuit Potential) test를 수행한 결과 2시간 동안 안정적인 OCP 특성을 보여 좋은 내구성을 가짐을 확인하였다. 또한, 산소 유무에 따른 cyclic voltammetry 그래프의 차이를 확인하고, amperometry로 감도 및 반응 시간, 선형성을 측정/분석하였다. 제작된 산소 센서는 40초의 90% 반응 시간과 0.994의 아주 좋은 선형 상관계수를 보여주었다.

  • PDF

Development of the Smart Device for Real Time Water Quality Monitoring (실시간 수질 모니터링을 위한 스마트 디바이스의 개발)

  • Ryu, Dae-Hyun;Choi, Tae-Wan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.723-728
    • /
    • 2019
  • Citizens' distrust of water pollution is very high in tap water that we routinely drink. In addition, water pollution accidents of tap water are difficult to predict and the risk is high, so real-time monitoring and management are needed. Therefore, it is necessary to introduce real-time water quality monitoring using the Internet of things(IoT). Residual chlorine is more persistent and economical than other disinfectants and it is easy to check residual effect, so it is mainly used as a disinfection index in waterworks. It can be monitored in real time by using IoT technology in order to secure the safety of tap water. In this study, we developed smart device for real-time water quality monitoring using amperometry sensor and analyzed its performance.

Daily Amperometric Monitoring of Immunoglobulin E in a Mouse Whole Blood: Model of Ovalbumin Induced Asthma

  • Lee, Ju Kyung;Yoon, Sung-hoon;Kim, Sang Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.1
    • /
    • pp.13-21
    • /
    • 2022
  • There is an increasing interest in monitoring of specific biomarker for determining progression of a disease or efficacy of a treatment. Conventional method for quantification of specific biomarkers as enzyme linked immunosorbent assay (ELISA) has high material costs, long incubation periods, requires large volume of samples and involves special instruments, which necessitates clinical samples to be sent to a lab. This paper reports on the development of an electrochemical biosensor to measure total immunoglobulin E (IgE), a marker of asthma disease that varies with age, gender, and disease in concentrations from 0.3-1000 ng/mL with consuming 20 µL volume of whole blood sample. The sensor provides rapid, accurate, easy, point-of-care measurement of IgE, also, sequential monitoring of total IgE with ovalbumin (OVA) induced mice is another application of sensor. Taken together, these results provide an alternative way for detection of biomarkers in whole blood with low volumes and long-term ex-vivo assessments for understanding the progression of a disease.

Development of a multi channel measurement system for the cellular respiration measurement (세포 호흡량 측정용 다채널 측정 시스템 개발)

  • Nam, Hyun-Wook;Park, Jung-Il;KimPak, Young-Mi;Pak, James Jung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.36-42
    • /
    • 2010
  • This paper describes a multi channel measurement system which can measure the cellular respiration level in a solution containing cells by using a Clark-type sensor with the solution temperature control unit. The Clark-type sensor can measure the cellular respiration level in the solution because it can measure the reduction current depending on the dissolved oxygen level in the solution. This measurement system was maintained the temperature within ${\pm}0.1^{\circ}C$ of the setting temperature value by on/off control method in order to measure the precise cellular respiration level. The measurement system showed that the applied voltage to the working electrode was very stable(-0.8 V$\pm$ 0.0071 V) by using proportional control method. From the current measurement, the response time and the linearity correlation coefficient were 25 sec and 0.94, respectively, which are very close to the results of the commercial product. Using this system and the fabricated Clarktype sensor, the average ratio of the uncoupled OCR(oxygen consumption rate) to the coupled OCR was 1.35 and this is almost the same as that obtained from a commercial systems.