Browse > Article
http://dx.doi.org/10.5369/JSST.2017.26.6.379

Electrochemical Non-Enzymatic Glucose Sensor based on Hexagonal Boron Nitride with Metal-Organic Framework Composite  

Ranganethan, Suresh (Graduate Department of Chemical Materials, Pusan National University)
Lee, Sang-Mae (Engineering Research Center for Net Shape and Die Manufacturing, Pusan National University)
Lee, Jaewon (College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University)
Chang, Seung-Cheol (Institute of BioPhysio Sensor Technology, Pusan National University)
Publication Information
Journal of Sensor Science and Technology / v.26, no.6, 2017 , pp. 379-385 More about this Journal
Abstract
In this study, an amperometric non-enzymatic glucose sensor was developed on the surface of a glassy carbon electrode by simply drop-casting the synthesized homogeneous suspension of hexagonal boron nitride (h-BN) nanosheets with a copper metal-organic framework (Cu-MOF) composite. Comprehensive analytical methods, including field-emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), cyclic voltammetry, electrochemical impedance spectroscopy, and amperometry, were used to investigate the surface and electrochemical characteristics of the h-BN-Cu-MOF composite. The FE-SEM, FT-IR, and XRD results showed that the h-BN-Cu-MOF composite was formed successfully and exhibited a good porous structure. The electrochemical results showed a sensor sensitivity of $18.1{\mu}A{\mu}M^{-1}cm^{-2}$ with a dynamic linearity range of $10-900{\mu}M$ glucose and a detection limit of $5.5{\mu}M$ glucose with a rapid turnaround time (less than 2 min). Additionally, the developed sensor exhibited satisfactory anti-interference ability against dopamine, ascorbic acid, uric acid, urea, and nitrate, and thus, can be applied to the design and development of non-enzymatic glucose sensors.
Keywords
Hexagonal boron nitride; copper metal-organic framework; non-enzymatic; electrochemical; glucose sensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Sun, X. Zhang, Y. Sun, S. Yang, X. Song and Z. Yang, "Facile water-assisted synthesis of cupric oxide nanourchins and their application as nonenzymatic glucose biosensor", ACS Appl. Mater. Interfaces, Vol. 5, No. 10, pp. 4429-4437, 2013.   DOI
2 J. Zhao, L. Wei, C. Peng, Y. Su, Z. Yang, L. Zhang, H. Wei and Y. Zhang, "A non-enzymatic glucose sensor based on the composite of cubic Cu nanoparticles and arc-synthesized multi-walled carbon nanotubes", Biosens. Bioelectron., Vol. 47, pp. 86-91, 2013.   DOI
3 K. Dhara, J. Stanley, R. T, B. G. Nair and S. B. T.G, "Pt-CuO nanoparticles decorated reduced graphene oxide for the fabrication of highly sensitive non-enzymatic disposable glucose sensor", Sens. Actuators B Chem., Vol. 195, pp. 197-205, 2014.   DOI
4 P. Zhang, L. Zhang, G. Zhao and F. Feng, "A highly sensitive nonenzymatic glucose sensor based on CuO nanowires", Microchim. Acta, Vol. 176, No. 3, pp. 411-417, 2011.   DOI
5 C. Li, M. Kurniawan, D. Sun, H. Tabata and J. J. Delaunay, "Nanoporous CuO layer modified Cu electrode for high performance enzymatic and non-enzymatic glucose sensing", Nanotechnology, Vol. 26, No. 1, 015503, 2015.   DOI
6 L. Tian and B. Liu, "Fabrication of CuO nanosheets modified Cu electrode and its excellent electrocatalytic performance towards glucose", Appl. Surf. Sci., Vol. 283, pp. 947-953, 2013.   DOI
7 C. Wei, X. Li, F. Xu, H. Tan, Z. Li, L. Sun and Y. Song, "Metal organic framework-derived anthill-like Cu@carbon nanocomposites for nonenzymatic glucose sensor", Anal. Method., Vol. 6, No. 5, pp. 1550-1557, 2014.   DOI
8 Y. Zhang, E. Zhou, Y. Li and X. He, "A novel nonenzymatic glucose sensor based on magnetic copper ferrite immobilized on multiwalled carbon nanotubes", Anal. Methods, Vol. 7, No. 6, pp. 2360-2366, 2015.   DOI
9 W. Lu, Y. Sun, H. Dai, P. Ni, S. Jiang, Y. Wang, Z. Li and Z. Li, "CuO nanothorn arrays on three-dimensional copper foam as an ultra-highly sensitive and efficient nonenzymatic glucose sensor", RSC Adv., Vol. 6, No. 20, pp. 16474-16480, 2016.   DOI
10 I. A. Khan, A. Badshah, M. A. Nadeem, N. Haider and M. A. Nadeem, "A copper based metal-organic framework as single source for the synthesis of electrode materials for high-performance supercapacitors and glucose sensing applications", Int. J. Hydrogen Energy, Vol. 39, No. 34, pp. 19609-19620, 2014.   DOI
11 J.-S. Ye, Y. Wen, W. D. Zhang, L. M. Gan, G. Q. Xu and F.-S. Sheu, "Nonenzymatic glucose detection using multiwalled carbon nanotube electrodes", Electrochem. Commun., Vol. 6, No. 1, pp. 66-70, 2004.   DOI
12 L. C. Clark and C. Lyons, "Electrode systems for continuous monitoring in cardiovascular surgery", Annals. NY Acad. Sci., Vol. 102, No. 1, pp. 29-45, 1962.
13 J. Wang, "Electrochemical glucose biosensors", Chem. Rev., Vol. 108, No. 2, pp. 814-825, 2008.   DOI
14 Z. Zhuang, X. Su, H. Yuan, Q. Sun, D. Xiao and M. M. Choi, "An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode", Analyst, Vol. 133, No. 1, pp. 126-132, 2008.   DOI
15 S.-J. Li, N. Xia, X.-L. Lv, M.-M. Zhao, B.-Q. Yuan and H. Pang, "A facile one-step electrochemical synthesis of graphene/NiO nanocomposites as efficient electrocatalyst for glucose and methanol", Sens. Actuators B Chem., Vol. 190, pp. 809-817, 2014.   DOI
16 S. Park, T. D. Chung, and H. C. Kim, "Nonenzymatic glucose detection using mesoporous platinum", Anal. Chem., Vol. 75, No. 13, pp. 3046-3049, 2003.   DOI
17 H. Al-Kutubi, J. Gascon, E. J. R. Sudhölter and L. Rassaei, "Electrosynthesis of metal-organic frameworks: challenges and opportunities", ChemElectroChem, Vol. 2, No. 4, pp. 462-474, 2015.   DOI
18 Y. Zhang, X. Bo, C. Luhana, H. Wang, M. Li and L. Guo, "Facile synthesis of a Cu-based MOF confined in macroporous carbon hybrid material with enhanced electrocatalytic ability", Chem. Commun. (Camb), Vol. 49, No. 61, pp. 6885-6887, 2013.   DOI
19 J. Mao, L. Yang, P. Yu, X. Wei and L. Mao, "Electrocatalytic four-electron reduction of oxygen with Copper (II)-based metal-organic frameworks", Electrochem. Commun., Vol. 19, pp. 29-31, 2012.   DOI
20 C. Zhang, M. Wang, L. Liu, X. Yang and X. Xu, "Electrochemical investigation of a new Cu-MOF and its electrocatalytic activity towards $H_2O_2$ oxidation in alkaline solution", Electrochem. Commun., Vol. 33, pp. 131-134, 2013.   DOI
21 Y. Lin, T. V. Williams, T.-B. Xu, W. Cao, H. E. Elsayed-Ali and J. W. Connell, "Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water", J. Phys. Chem. C, Vol. 115, No. 6, pp. 2679-2685, 2011.   DOI
22 X. Wang, Q. Wang, Q. Wang, F. Gao, F. Gao, Y. Yang and H. Guo, "Highly dispersible and stable copper terephthalate metal-organic framework-graphene oxide nanocomposite for an electrochemical sensing application", ACS Appl. Mater. Interfaces, Vol. 6, No. 14, pp. 11573-11580, 2014.   DOI
23 Y. Liu, Y. Zhang, J. Chen and H. Pang, "Copper metalorganic framework nanocrystal for plane effect nonenzymatic electro-catalytic activity of glucose", Nanoscale, Vol. 6, No. 19, pp. 10989-10994, 2014.   DOI
24 B. Albert and H. Hillebrecht, "Boron: elementary challenge for experimenters and theoreticians", Angew. Chem. Int. Ed. Engl, Vol. 48, No. 46, pp. 8640-8668, 2009.   DOI
25 J. Yang, F. Zhao and B. Zeng, "One-step synthesis of a copper-based metal-organic framework-graphene nanocomposite with enhanced electrocatalytic activity", RSC Adv., Vol. 5, No. 28, pp. 22060-22065, 2015.   DOI
26 D. J. Tranchemontagne, J. R. Hunt and O. M. Yaghi, "Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0", Tetrahedron, Vol. 64, No. 36, pp. 8553-8557, 2008.   DOI
27 L. H. Wee, M. R. Lohe, N. Janssens, S. Kaskel and J. A. Martens, "Fine tuning of the metal-organic framework $Cu_3(BTC)_2$ HKUST-1 crystal size in the 100 nm to 5 micron range", J. Mater. Chem., Vol. 22, No. 27, pp. 13742-13746, 2012.   DOI
28 Y. Wang, Y. Wu, J. Xie, H. Ge and X. Hu, "Multi-walled carbon nanotubes and metal-organic framework nanocomposites as novel hybrid electrode materials for the determination of nano-molar levels of lead in a lab-on-valve format", Analyst, Vol. 138, No. 17, pp. 5113-5120, 2013.   DOI
29 T. Sainsbury, A. O'Neill, M. K. Passarelli, M. Seraffon, D. Gohil, S. Gnaniah, S. J. Spencer, A. Rae and J. N. Coleman, "Dibromocarbene functionalization of boron nitride nanosheets: toward band gap manipulation and nanocomposite applications", Chem. Mater, Vol. 26, No. 24, pp. 7039-7050, 2014.   DOI
30 Y. Song, X. Li, C. Wei, J. Fu, F. Xu, H. Tan, J. Tang and L. Wang, "A green strategy to prepare metal oxide superstructure from metal-organic frameworks", Sci. Rep., Vol. 5, No. 8401, 2015.
31 C. Huang, C. Chen, X. Ye, W. Ye, J. Hu, C. Xu and X. Qiu, "Stable colloidal boron nitride nanosheet dispersion and its potential application in catalysis", J. Mater. Chem., Vol. 1, No. 39, pp. 12192-12197, 2013.   DOI
32 Q. Liu, L. N. Jin and W. Y. Sun, "Facile fabrication and adsorption property of a nano/microporous coordination polymer with controllable size and morphology", Chem. Commun. (Camb), Vol. 48, No. 70, pp. 8814-8816, 2012.   DOI
33 J. Yang, L. C. Jiang, W. D. Zhang and S. Gunasekaran, "A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays", Talanta, Vol. 82, No. 1, pp. 25-33, 2010.   DOI
34 H. Wei, J. J. Sun, L. Guo, X. Li and G. N. Chen, "Highly enhanced electrocatalytic oxidation of glucose and shikimic acid at a disposable electrically heated oxide covered copper electrode", Chem. Commun., No. 20, pp. 2842-2844, 2009.
35 J. Marioli and T. Kuwana, "Elctrochemical characterization of carbohydridate oxidation at copper electrodes", Electrochim. Acta., Vol. 37, pp. 1187-1197, 1992.   DOI
36 R. Ahmad, M. Vaseem, N. Tripathy and Y. B. Hahn, "Wide linear-range detecting nonenzymatic glucose biosensor based on CuO nanoparticles inkjet-printed on electrodes", Anal. Chem., Vol. 85, No. 21, pp. 10448-10454, 2013.   DOI