• Title/Summary/Keyword: amperometric sensing

Search Result 21, Processing Time 0.027 seconds

Porous silicon-based chemical and biosensors (다공질 실리콘 구조를 이용한 화학 및 바이오 센서)

  • Kim, Yun-Ho;Park, Eun-Jin;Choi, Woo-Seok;Hong, Suk-In;Min, Nam-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2410-2412
    • /
    • 2005
  • In this study, two types of PS substrate were fabricated for sensing of chemical and biological substances. For sensing of the humidity and chemical analyzes such as $CH_3OH$ or $C_2H_5OH$, PS layers are prepared by photoelectrochemical etching of silicon wafer in aqueous hydrofluoric acid solution. To evaluate their sensitivity, we measured the resistance variation of the PS diaphragm. As the amplitude of applied voltage increases from 2 to 6Vpp at constant frequency of 5kHz, the resistance variation for humidity sensor rises from 376.3 to $784.8{\Omega}$/%RH. And the sensitivities for $CH_3OH$ and $C_2H_5OH$ were 0.068 uA/% and 0.212 uA/%, respectively. For biological sensing application, amperometric urea sensors were fabricated based on porous silicon(PS), and planar silicon(PLS) electrode substrates by the electrochemical methods. Pt thin film was sputtered on these substrates which were previously formed by electrochemical anodization. Poly (3-methylthiophene) (P3MT) were used for electron transfer matrix between urease(Urs) and the electrode phase, and Urs also was by electrochemically immobilized. Effective working area of these electrodes was determined for the first time by using $Fe(CN)_6^{3-}/Fe(CN)_6^{4-}$ redox couple in which nearly reversible cyclic voltammograms were obtained. The $i_p$ vs $v^{1/2}$ plots show that effective working electrode area of the PS-based Pt thin film electrode was 1.6 times larger than the PLS-based one and we can readily expect the enlarged surface area of PS electrode would result in increased sensitivity by ca. 1.6 times. Actually, amperometric sensitivity of the Urs/P3MT/Pt/PS electrode was ca 0.91uA/$mM{\cdot}cm^2$, and that of the Urs/P3MT/Pt/PLS electrode was ca. 0.91uA/$mM{\cdot}cm^2$ in a linear range of 1mmol/L to 100mmol/L urea concentrations

  • PDF

Electrochemical properties of the mugwort-embedded biosensor for the determination of hydrogen peroxide (쑥을 이용한 과산화수소 정량 바이오센서의 전기화학적 성질)

  • Lee, Beom-Gyu;Park, Sung-Woo;Yoon, Kil-Joong
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.58-64
    • /
    • 2006
  • A mugwort-tissue-based modified carbon paste electrode was constructed for the amperometric detection of hydrogen peroxide and its electrochemical properties are described. Especially the amperometric signal was very stable and bigger than any other enzyme electrode studied in this lab. The effect of tissue composition on the response was linear within the wide range of experiment and the linearity of Lineweaver-Burk plot showed that the sensing process of the biosensor is by enzymatic catalysis. And pH dependent current profile connoted that two isozymes are active in this system.

Portable Amperometric Perchlorate Selective Sensors with Microhole Array-water/organic Gel Interfaces

  • Lee, Sang Hyuk;Kim, Hyungi;Girault, Hubert H.;Lee, Hye Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2577-2582
    • /
    • 2013
  • A novel stick-shaped portable sensing device featuring a microhole array interface between the polyvinylchloride-2-nitrophenyloctylether (PVC-NPOE) gel and water phase was developed for in-situ sensing of perchlorate ions in real water samples. Perchlorate sensitive sensing responses were obtained based on measuring the current changes with respect to the assisted transfer reaction of perchlorate ions by a perchlorate selective ligand namely, bis(dibenzoylmethanato)Ni(II) (Ni(DBM)2) across the polarized microhole array interface. Cyclic voltammetry was used to characterize the assisted transfer reaction of perchlorate ions by the $Ni(DBM)_2$ ligand when using the portable sensing device. The current response for the transfer of perchlorate anions by $Ni(DBM)_2$ across the micro-water/gel interface linearly increased as a function of the perchlorate ion concentration. The technique of differential pulse stripping voltammetry was also utilized to improve the sensitivity of the perchlorate anion detection down to 10 ppb. This was acquired by preconcentrating perchlorate anions in the gel layer by means of holding the ion transfer potential at 0 mV (vs. Ag/AgCl) for 30 s followed by stripping the complexed perchlorate ion with the ligand. The effect of various potential interfering anions on the perchlorate sensor was also investigated and showed an excellent selectivity over $Br^-$, $NO_2{^-}$, $NO_3{^-}$, $CO{_3}^{2^-}$, $CH_3COO^-$ and $SO{_4}^{2^-}$ ions. As a final demonstration, some regional water samples from the Sincheon river in Daegu city were analyzed and the data was verified with that of ion chromatography (IC) analysis from one of the Korean-certified water quality evaluation centers.

An Improvement of Recovery Characteristics of ISFET Glucose Sensor by Employing Oxygen Electrolysis (산소분자의 전기분해법을 도입한 ISFET 포도당센서의 회복특성 개선)

  • Park, Keun-Yong;Choi, Sang-Bok;Lee, Young-Chul;Lee, Min-Ho;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.203-207
    • /
    • 2000
  • The sensitivity of ISFET glucose sensor is improved by employing amperometric actuation method. However, this method takes long time to recover the primary output voltage after measurement because of slow migration of the hydrogen ion between internal and external sensing membranes. Consequently, such a recovery-time delaying problem is one of obstacles to a practical use. In this paper, a new method is proposed to control the concentration of hydrogen ion in internal membrane, which applies a reduction potential to the working electrode for supplying hydroxide ion. Experimental results show that the recovery-time was reduced within 2 minute against decades minute of conventional method.

  • PDF

Electrochemical Detection of Hydrogen Peroxide based on Viologen Monolayers (Viologen 박막을 이용한 과산화수소의 전기화학적 검출 특성)

  • Choi, Won-Suk;Lee, Dong-Yun;Park, Sang-Hyun;Park, Jae-Chul;Kwon, Young-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2006-2010
    • /
    • 2008
  • In this paper, we fabricated a biosensor for detecting hydrogen peroxide and investigated the sensing property. We prepared a viologen and hemoglobin modified gold electrode using self-assembly and layer by layer method. The electrochemical property of the viologen derivative was characterized in 0.1 M $NaClO_4$ electrolyte solution by cyclic voltammetry. The modified electrode showed reversible electrochemical properties and high stability. From the results, the viologen can act as a charge transfer mediator for access to the electrode surface. The catalytic characteristics of the designed sensor proved that hemoglobin has been kept in its natural structure and can retain its biological activity. The designed biosensor showed a fast amperometric response, excellent linearity and low detection limit. In addition, it had high sensitivity, good reproducibility and stability.

Detection of Food-Grade Hydrogen Peroxide by HRP-Biocomposite Modified Biosensors

  • Chang, Seung-Cheol
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.6
    • /
    • pp.447-454
    • /
    • 2017
  • A new amperometric biosensor has been developed for the detection of hydrogen peroxide ($H_2O_2$). The sensor was fabricated through the one-step deposition of a biocomposite layer onto a glassy carbon electrode at neutral pH. The biocomposite, as a $H_2O_2$ sensing element, was prepared by the electrochemical deposition of a homogeneous mixture of graphene oxide, aniline, and horseradish peroxidase. The experimental results clearly demonstrated of that the sensor possessed high electrocatalytic activity and responded to $H_2O_2$ with a stable and rapid manners. Scanning electron microscopy, cyclic voltammetry, and amperometry were performed to optimize the characteristics of the sensor and to evaluate its sensing chemistry. The sensor exhibited a linear response to $H_2O_2$ in the range of 10 to $500{\mu}M$ concentrations, and its detection limit was calculated to be $1.3{\mu}M$. The proposed sensing-chemistry strategy and the sensor format were simple, cost-effective, and feasible for analysis of "food-grade $H_2O_2$" in food samples.

Voltammetric Studies of Anion Transfer Reactions Across a Microhole Array-Water/PVC-NPOE Gel Interface

  • Hossain, Md. Mokarrom;Girault, Hubert H.;Lee, Hye-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1734-1740
    • /
    • 2012
  • Voltammetric characterization of hydrophilic anion transfer processes across a 66 microhole array interface between the water and polyvinylchloride-2-nitrophenyloctylether gel layer is demonstrated. Since the transfer of hydrophilic anions including $Br^-$, $NO_3{^-}$, $I^-$, $SCN^-$ and $ClO_4{^-}$ across the liquid/gel interface usually sets the potential window within a negative potential region, a highly hydrophobic organic electrolyte, tetraoctylammonium tetrakis(pentafluorophenyl)borate, providing a wider potential window was incorporated into the gel phase. The transfer reaction of perchlorate anions across the microhole-water/gel interface was first studied using cyclic voltammetry and differential pulse voltammetry. The full voltammetric response of perchlorate anion transfer was then used as a reference for evaluating the half-wave transfer potentials, the formal transfer potentials and the formal Gibbs transfer energies of more hydrophilic anions such as $Br^-$, $NO_3{^-}$, $I^-$, and $SCN^-$. The current response associated with the perchlorate anion transfer across the micro-water/gel interface versus the perchlorate concentration was also demonstrated for sensing applications.

Fabrication of Pt-MWNT/Nafion Electrodes by Low-Temperature Decal Transfer Technique for Amperometric Hydrogen Detection

  • Rashid, Muhammad;Jun, Tae-Sun;Kim, Yong Shin
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.18-25
    • /
    • 2014
  • A Pt nanoparticle-decorated multiwall carbon nanotube (Pt-MWNT) electrode was prepared on Nafion by a hot-pressing at relatively low temperature. This electrode exhibited an intricate entangled, nanoporous structure as a result of gathering highly anisotropic Pt-MWNTs. Individual Pt nanoparticles were confirmed to have a polycrystalline face-centered cubic structure with an average crystal size of around 3.5 nm. From the cyclic voltammograms for hydrogen redox reactions, the Pt-MWNT electrode was found to have a similar electrochemical behavior to polycrystalline Pt, and a specific electrochemical surface area of $2170cm^2mg^{-1}$. Upon exposure to hydrogen analyte, the Pt-MWNT/Nafion electrode demon-strated a very high sensitivity of $3.60{\mu}A\;ppm^{-1}$ and an excellent linear response over the concentration range of 100-1000 ppm. Moreover, this electrode was also evaluated in terms of response and recovery times, reproducibility, and long-term stability. Obtained results revealed good sensing performance in hydrogen detection.

Investigation of the Flow Dependence of a FET-Type Dissolved Oxygen Sensor and Its Reducing Method (FET형 용존 산소 센서의 유속에 의한 영향 조사와 감쇄 기법)

  • Jeong, H.;Kim, Y.J.;Lee, Y.C.;Sohn, B.K.
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.180-186
    • /
    • 2001
  • Recently, FET type dissolved oxygen sensor was proposed to overcome the disadvantages of the amperometric Clark-type sensor. The inherent problem of the proposed sensor, however, is the flow dependence of the sensor performances since the proposed sensor detects the pH change in close proximity to the working electrode. In this study, we decided the direction which minimize the flow effect in FIA(flow injection analysis) system. And a hydrodynamic buffer layer which can reduce the flow dependence were proposed. The suggested buffer-layers were formed onto sensing area and working electrode with mixed polymer matrix of TEOS(tetraethylorthosilicate) and DEDMS(diethoxydimethylsilane).

  • PDF

Method for the Measurement of Dissolved Oxygen in a Cell Culture Microchannel Using Oxygen-Sensitive Luminescence (산소 민감 발광 염료를 이용한 마이크로 채널 내에서 배양되는 세포 주변의 산소 농도 측정)

  • Lee, Seung-Youl;Jin, Song-Wan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.533-538
    • /
    • 2012
  • In this study, we used an $O_2$-sensitive luminescent dye to measure the $O_2$ concentration of culture media around HeLa cells cultured in a microchannel. $[Ru(bpy)_3]^{2+}$, which dissolves easily in water and which has no phototoxic effect, was used as the $O_2$-sensitive dye. The ratiometric sensing method was applied by introducing calcein as the $O_2$-insensitive dye, in order to overcome the disadvantages of intensity-based sensing. By performing calibration with an amperometric $O_2$ sensor, we could calculate the exact concentration of $O_2$ in the culture media. We applied this technique to measure the $O_2$ concentration around the cultured cells in the microchannel. As expected, the $O_2$ concentration gradually decreased as the cells moved farther away from the channel. This method is expected to be applicable to the investigation of hypoxia, which occurs commonly in scaffolds.