DOI QR코드

DOI QR Code

Portable Amperometric Perchlorate Selective Sensors with Microhole Array-water/organic Gel Interfaces

  • Lee, Sang Hyuk (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University) ;
  • Kim, Hyungi (The BIO Co., Ltd.) ;
  • Girault, Hubert H. (Laboratoire d'Electrochimie Physique et Analytique, Station 6, Ecole Polytechnique Federale de Lausanne) ;
  • Lee, Hye Jin (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University)
  • Received : 2013.05.12
  • Accepted : 2013.06.02
  • Published : 2013.09.20

Abstract

A novel stick-shaped portable sensing device featuring a microhole array interface between the polyvinylchloride-2-nitrophenyloctylether (PVC-NPOE) gel and water phase was developed for in-situ sensing of perchlorate ions in real water samples. Perchlorate sensitive sensing responses were obtained based on measuring the current changes with respect to the assisted transfer reaction of perchlorate ions by a perchlorate selective ligand namely, bis(dibenzoylmethanato)Ni(II) (Ni(DBM)2) across the polarized microhole array interface. Cyclic voltammetry was used to characterize the assisted transfer reaction of perchlorate ions by the $Ni(DBM)_2$ ligand when using the portable sensing device. The current response for the transfer of perchlorate anions by $Ni(DBM)_2$ across the micro-water/gel interface linearly increased as a function of the perchlorate ion concentration. The technique of differential pulse stripping voltammetry was also utilized to improve the sensitivity of the perchlorate anion detection down to 10 ppb. This was acquired by preconcentrating perchlorate anions in the gel layer by means of holding the ion transfer potential at 0 mV (vs. Ag/AgCl) for 30 s followed by stripping the complexed perchlorate ion with the ligand. The effect of various potential interfering anions on the perchlorate sensor was also investigated and showed an excellent selectivity over $Br^-$, $NO_2{^-}$, $NO_3{^-}$, $CO{_3}^{2^-}$, $CH_3COO^-$ and $SO{_4}^{2^-}$ ions. As a final demonstration, some regional water samples from the Sincheon river in Daegu city were analyzed and the data was verified with that of ion chromatography (IC) analysis from one of the Korean-certified water quality evaluation centers.

Keywords

References

  1. Urbansky, E. T. Biorem. J. 1998, 2, 81. https://doi.org/10.1080/10889869891214231
  2. Greer, M. A.; Goodman, G.; Pleus, R. C.; Greer, S. E. Environ. Health Perspect. 2002, 110, 927. https://doi.org/10.1289/ehp.02110927
  3. http://water.nier.go.kr/waterBoard/waterBoardContent.do?seq=1229&boardType=weis/7_news&frontYn=Y&returnUrl=/front/waterPress/waterNewsView.jsp
  4. Kirk, A. B.; Dyke, J. V.; Ohira, S. I.; Dasgupta, P. K. Sci. Total Environ. 2013, 443, 939. https://doi.org/10.1016/j.scitotenv.2012.11.072
  5. http://www.dionex.comen-uswebdocs4096-AN144-ICPerchlorate-Fertilizer-Extracts AN7040 1_E.pdf
  6. Lee, J. W.; Oh, S. H.; Oh, J. E. J. Hazard. Mater. 2012, 243, 52. https://doi.org/10.1016/j.jhazmat.2012.09.037
  7. Gu, B.; Tio, J.; Wang, W.; Ku, Y. K.; Dai, S. Appl. Spectrosc. 2004, 58, 741. https://doi.org/10.1366/000370204872890
  8. http://serdp-estcp.org/Program-Areas/Environmental-Restoration/Contaminated-Groundwater/Monitoring/ER-1706/ER-1706/(modified)/14Jan2013
  9. Li, X. A.; Zhou, D. M.; Xu, J. J.; Chen, H. Y. Talanta 2008, 75, 157. https://doi.org/10.1016/j.talanta.2007.10.054
  10. Quang, L. X.; Lim, C. S.; Seong, G. H.; Choo, J. B.; Do, K. J.; Yoo, S. K. Lab Chip. 2008, 8, 2214. https://doi.org/10.1039/b808835g
  11. Pumera, M. J. Chromatogr. A 2006, 1113, 5.
  12. Tanyanyiwa, J.; Villar, E. M. A.; Abedul, M. T. F.; Garcia, A. C.; Hoffmann, W.; Guber, A. E.; Herrmann, D.; Gerlach, A.; Gottschlich, N.; Hauser, P. C. Analyst. 2003, 128, 1019.
  13. Wang, J.; Pumera, M.; Collins, G.; Opekar, F.; Jelinek, I. Analyst. 2002, 127, 719. https://doi.org/10.1039/b201700h
  14. Samec, Z.; Samcova, E.; Girault, H. H. Talanta 2004, 63, 21. https://doi.org/10.1016/j.talanta.2003.11.023
  15. Zazpe, R.; Hibert, C.; O'Brien, J.; Lanyon, Y. H.; Arrigan, D. W. M. Lab Chip. 2007, 7, 1732. https://doi.org/10.1039/b712601h
  16. Rodgers, P. J.; Amemiya, S. Anal. Chem. 2007, 79, 9276. https://doi.org/10.1021/ac0711642
  17. Tong, Y.; Sun, P.; Zhang, Z.; Shao, Y. J. Electroanal. Chem. 2001, 504, 52. https://doi.org/10.1016/S0022-0728(01)00424-7
  18. Liu, B.; Shao, Y.; Mirkin, M. V. Anal. Chem. 2000, 72, 510. https://doi.org/10.1021/ac990771p
  19. Lee, H. J.; Lagger, G.; Pereira, C. M.; Silva, A. F.; Girault, H. H. Talanta 2009, 78, 66. https://doi.org/10.1016/j.talanta.2008.10.059
  20. Hossain, M. M.; Faisal, S. N.; Kim, C. S.; Cha, H. J.; Nam, S. C.; Lee, H. J. Electrochem. Commun. 2011, 13, 611. https://doi.org/10.1016/j.elecom.2011.03.024
  21. Hossain, M. M.; Girault, H. H.; Lee, H. J. Bull. Korean Chem. Soc. 2012, 33, 1734. https://doi.org/10.5012/bkcs.2012.33.5.1734
  22. Hossain, M. M.; Lee, S. H.; Girault, H. H.; Devaud, V.; Lee, H. J. Electrochim. Acta 2012, 82, 12. https://doi.org/10.1016/j.electacta.2012.03.127
  23. O'Mahony, A. M.; Scanlon, M. D.; Berduque, A.; Beni, V.; Arrigan, D. W. M.; Faggi, E.; Bencini, A. Electrochem. Commun. 2005, 13, 611.
  24. Herzog, G.; Roger, A.; Sheehan, D.; Arrigan, D. W. M. Anal. Chem. 2010, 82, 258. https://doi.org/10.1021/ac901909j
  25. Soldatov, D. V.; Ripmeester, J. A. Chem. Eur. J. 2001, 7, 2979. https://doi.org/10.1002/1521-3765(20010716)7:14<2979::AID-CHEM2979>3.0.CO;2-U
  26. Lee, H. J.; Beattie, P. D.; Seddon, B. J.; Osborne, M. D.; Girault, H. H. J. Electroanal. Chem. 1997, 440, 73.
  27. Peulon, S.; Guillou, V.; L'Her, M. J. Electroanal. Chem. 2001, 514, 94. https://doi.org/10.1016/S0022-0728(01)00617-9
  28. Macca, C.; Wang, J. Anal. Chim. Acta 1995, 303, 265. https://doi.org/10.1016/0003-2670(94)00511-J

Cited by

  1. Recent developments in electrochemistry at the interface between two immiscible electrolyte solutions for ion sensing vol.140, pp.12, 2015, https://doi.org/10.1039/C5AN00601E
  2. Electroanalysis with Membrane Electrodes and Liquid–Liquid Interfaces vol.88, pp.1, 2016, https://doi.org/10.1021/acs.analchem.5b04034
  3. ) complexes vol.53, pp.28, 2017, https://doi.org/10.1039/C7CC00477J
  4. Portable Sensor for the Detection of Choline and Its Derivatives Based on Silica Isoporous Membrane and Gellified Nanointerfaces vol.2, pp.6, 2013, https://doi.org/10.1021/acssensors.7b00166