• Title/Summary/Keyword: amorphous structure

Search Result 977, Processing Time 0.03 seconds

Synthesis of Amorphous Matrix Nano-composite in Al-Cu-Mg Alloy

  • Kim, Kang Cheol;Park, Sung Hyun;Na, Min Young;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.44 no.3
    • /
    • pp.105-109
    • /
    • 2014
  • The microstructure of as-quenched $Al_{70}Cu_{18}Mg_{12}$ alloy has been investigated in detail using transmission electron microscopy. Al nano-crystals about 5 nm with a high density are distributed in the amorphous matrix, indicating amorphous matrix nano-composite can be synthesized in Al-Cu-Mg alloy. The high density of Al nano-crystals indicates very high nucleation rate and sluggish growth rate during crystallization possibly due to limited diffusion rate of solute atoms of Cu and Mg during solute partitioning. The result of hardness measurement shows that the mechanical properties can be improved by designing a nano-composite structure where nanometer scale crystals are embedded in the amorphous matrix.

Optical Properties of Semiconductors Depending on the Contact Characteristic Between Different Groups (이종 물질의 접합계면에 의한 반도체 물질의 광학적 특성)

  • Oh, Teresa;Nho, Jong Ku
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.2
    • /
    • pp.71-75
    • /
    • 2014
  • To observe the optical characteristic of oxide semiconductor depending on the degree of bonding structures, SiOC, ZnO and IGZO were prepared by the RF magnetron sputter system and chemical vapor deposition. Generally, crystal ZnO, amorphous SiOC and IGZO changed the optical characteristics in according to the electro-chemical behavior due to the oxygen vacancy at an interface between different groups. Transmittance of SiOC and IGZO with amorphous structures was higher than that of ZnO with crystal structure, because of lowering the carrier concentration due to the recombination of electron and holes carriers as oxygen vacancies. Besides, the energy gap of amorphous SiOC and IGZO was higher than the energy gap of crystal ZnO. The diffusion mobility of holes is higher than the drift mobility of electrons.

Characterization of Poly-Si TFT's using Amorphous-$Si_xGe_y$ for Seed Layer (Amorphous-$Si_xGe_y$을 seed layer로 이용한 Poly-Si TFT의 특성)

  • Jung, Myung-Ho;Jung, Jong-Wan;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.125-126
    • /
    • 2007
  • Polycrystalline silicon thin-film-transistors (Poly-Si TFT's) with a amorphous-$Si_xGe_y$ seed layer have been fabricated to improve the performance of TFT. The dependence of crystal structure and electrical characteristics on the the Ge fractions in $Si_xGe_y$ seed layer were investigated. As a result, the increase of grain size and enhancement of electrical characteristics were obtained from the poly-Si TFT's with amorphous-SixGey seed layer.

  • PDF

Colloidal Photonic Crystals with Quasi-Amorphous Structure: Angle-Independent Electrically Tunable Full Color Photonic Pixels

  • Kim, Dae-Hyeon;Jeong, Jae-Yeon;Ji, Seung-Uk;Gang, Yeong-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.278-278
    • /
    • 2010
  • Electrically tunable photonic band gap (PBG) materials based on crystalline structures have been developed for active components of display. Despite considerable advances, the intrinsic drawbacks of the crystalline PBG materials such as the strong angle dependent hue and difficulty of fabricating defect-free structures in large area have yet to be addressed for their practical applications. Here we report quasi-amorphous colloidal structures exhibiting angle-independent photonic colors in response to the electric stimuli. Moderately polydisperse colloidal Fe3O4@SiO2 nanoparticles dispersed in organic solvents exclusively form quasi-amorphous photonic materials at sufficiently high concentrations (> 30 wt%), and which reversibly reflect incident light in visible region ($\lambda$ peak = 490~655 nm) in response to the relatively low bias voltage (0~4 V). We show the angle-independent tunable photonic colors with the fast response time (50~170 ms) due to the isotropic nature of quasi-amorphous structures. Conventional vacuum injection technique is applicable for fabricating flexible full color photonic display pixels with various pre-defined shapes.

  • PDF

Joule-heating Induced Crystallization (JIC) of Amorphous Silicon Films

  • Ko, Da-Yeong;Ro, Jae-Sang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.101-104
    • /
    • 2018
  • An electric field was applied to a Mo conductive layer in the sandwiched structure of $glass/SiO_2/Mo/SiO_2/a-Si$ to induce Joule heating in order to generate the intense heat needed to carry out the crystallization of amorphous silicon. Polycrystalline silicon was produced via Joule heating through a solid state transformation. Blanket crystallization was accomplished within the range of millisecond, thus demonstrating the possibility of a new crystallization route for amorphous silicon films. The grain size of JIC poly-Si can be varied from few tens of nanometers to the one having the larger grain size exceeding that of excimer laser crystallized (ELC) poly-Si according to transmission electron microscopy. We report here the blanket crystallization of amorphous silicon films using the $2^{nd}$ generation glass substrate.

The improvement in the properties of $(Ba, Sr)TiO_3$films by the application of amorphous layer (비정질 $(Ba, Sr)TiO_3$층의 도입을 통한 $(Ba, Sr)TiO_3$박막의 특성 향상)

  • 백수현;이공수;마재평;박치선
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.221-226
    • /
    • 1998
  • Amorphous (Ba, Sr)$TiO_3$[BST] layer(30, 70 nm) was introduced between crystalline BST and $RuO_2$electrode to realize double-layered BST structure in order to improve the properties of BST film. The structure and surface morphology of double-layered BST film were modified by the application of amorphous BST layer; that is, surface became smoother and grain size increased abruptly. Amorphous layer thicker than 30 nm was effective to hinder the influence of $RuO_2$surface on the structure of as-grown BST films by in-situ process. Dielectric constant of double-layered BST film was improved dramatically from 152 to 340 and leakage current was lowered from $1.25{\times}10^{-5}A/{\textrm}{cm}^2);to;6.85{\times}10^{-7}A/{\textrm}{cm}^2$, respectively.

  • PDF

Low Velocity Impact Property of CF/Epoxy Laminate according to Interleaved Structure of Amorphous Halloysite Nanotubes (비정질 할로이사이트 나노입자의 교차적층 구조에 따른 탄소섬유/에폭시 라미네이트의 저속 충격 특성)

  • Ye-Rim Park;Sanjay Kumar;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.270-274
    • /
    • 2023
  • The stacking configuration of fiber-reinforced polymer (FRP) composites, achieved via the filament winding process, exhibits distinct variations compared to conventional FRP composite stacking arrangements. Consequently, it becomes challenging to ascertain the influence of mechanical properties based on the typical stacking structures. Thus, it becomes imperative to enhance the mechanical behavior and optimize the interleaved structures to improve overall performance. Therefore, this study aims to investigate the impact of incorporating amorphous halloysite nanotubes (A-HNTs) within different layers of five unique layer arrangements on the low-velocity impact properties of interleaved carbon fiber-reinforced polymer (CFRP) structures. The low-velocity impact characteristics of the laminate were validated using a drop weight impact test, wherein the resulting impact damage modes and extent of damage were compared and evaluated under microscopic analysis. Each interleaved structure laminate according to whether nanoparticles are added was compared at impact energies of 10 J and 15 J. In the case of 10 J, the absorption energy showed a similar tendency in each structure. However, at 15 J, the absorption energy varies from structure to structure. Among them, a structure in which nanoparticles are not added exhibits the highest absorption energy. Additionally, various impact fracture modes were observed in each structure through optical microscopy.

A Study On Properties and Phase Change Characteristics of (GeTe)x(Sb2Te3) (x=0.5, 1, 2, 8) Thin Films for PRAM (PRAM을 위한 (GeTe)x(Sb2Te3) (x=0.5, 1, 2, 8) 박막의 물성 및 상변환 특성 연구)

  • Kim, Sung-Won;Song, Ki-Ho;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.7
    • /
    • pp.585-593
    • /
    • 2008
  • In this work, we report several experimental data capable of evaluating the phase transformation characteristics of GeSbTe pseudobinary thin films comprehensively utilized as phase change materials. The phase transformation of the GeSbTe thin films was confirmed by XRD measurement from amorphous to hexagonal structure via fee structure except for $Ge_8Sb_2Te_{11}$. In addition, X-ray photoelectron spectra analysis revealed to weaken Ge-Te bond for $Ge_2Sb_2Te_5$ and to strengthen the bonds of all elements for $Ge_8Sb_2Te_{11}$ during the amorphous to crystalline transition. The values of optical energy gap $(E_{OP})$ were around 0.71 and 0.50 eV and the slopes of absorption in extended region (B) were ${\sim}5.1{\times}10^5$ and ${\sim}10{\times}10^5cm^{-1}{\cdot}V^{-1}$ for the amorphous and fcc-crystalline structures, respectively. Finally, the kinetics of amorphous-to-crystalline phase change on the GeSbTe films was characterized using a nano-pulse scanner with 658-nm laser diode (power; $1{\sim}17$ mW, pulse duration; $10{\sim}460$ ns).

Effect of Crystal Form on Bioavailability (결정형이 생체이용률에 미치는 영향)

  • Sohn, Young-Taek
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.6
    • /
    • pp.443-452
    • /
    • 2004
  • Habit is the description of the outer appearance of a crystal. If the environment of a growing crystal affects its external shape without changing its internal structure, a different habit results. Crystal habit and the internal structure of a drug can affect bulk and physicochemical properties, which range from flowability to chemical stability. A polymorph is a solid crystalline phase of a given compound resulting from the possibility of at least two different arrangements of the molecules of that compound in the solid state. Chemical stability and solubility changes due to polymorphism can have an impact on a drug's bioavailability and its development program. During crystallization from a solution, crystals separating may consist of a pure component or be a molecular compound. Solvates are molecular complexes that have incorporated the crystallizing solvent molecule in their lattice. When the solvent incorporated in the solvate is water, it is called a hydrate. To distinguish solvates from polymorphs, which are not molecular compounds, the term pseudopolymorph is used. Identification of possible hydrate compounds is important since their aqueous solubilities can be significantly less than their anhydrous forms. Conversion of an anhydrous compound to a hydrate within the dosage form may reduce the dissolution rate and extent of drug absorption. An amorphous solid may be treated as a supercooled liquid in which the arrangement of molecules is random. Amorphous solids lack the three-dimensional long-range order found in crystalline solids. Since amorphous forms are usually of higher thermodynamic energy than corresponding crystalline forms, solubilities as well as dissolution rates are generally greater. A study on crystal form includes characterization of (l)crystal habit, (2)polymorphism, (3)pseudopolymorphism, (4)amorphous solid.

The Effect of Additives on the Current Efficiency and the Microstructure of Trivalent Cr Electrodeposits Plated in Flow Cell System (고속도금된 3가 크롬도금의 전류효율 및 조직특성에 미치는 첨가제의 영향)

  • 예길촌;서경훈
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.2
    • /
    • pp.92-98
    • /
    • 2004
  • The current efficiency and the microstructure of the trivalent Cr deposits plated in flow cell system were investigated according to additives in sulfate bath and current density. The current efficiency of the deposits plated in the formic acid complexed bath was noticeably higher than that of the deposits from glycine complexed bath. The current efficiency of the deposits from the complexed baths with boric acid buffer increased linearly with current density in the range of 60-100 A/dm$^2$, while that of the deposits from the baths with both Al sulfate and mixed buffers increased parabolically with current density. The nodular crystallite size of the deposits increased with current density, and the deposits plated in low current density region had relatively smooth surface appearance with fine grains. The structure of the deposits from the complexed baths with boric acid buffer changed from amorphous structure to crystalline one with strong (110)peak with increasing current density. The deposits from the baths with both Al sulfate and mixed buffers had generally amorphous structure.