DOI QR코드

DOI QR Code

Effect of Crystal Form on Bioavailability

결정형이 생체이용률에 미치는 영향

  • Published : 2004.12.20

Abstract

Habit is the description of the outer appearance of a crystal. If the environment of a growing crystal affects its external shape without changing its internal structure, a different habit results. Crystal habit and the internal structure of a drug can affect bulk and physicochemical properties, which range from flowability to chemical stability. A polymorph is a solid crystalline phase of a given compound resulting from the possibility of at least two different arrangements of the molecules of that compound in the solid state. Chemical stability and solubility changes due to polymorphism can have an impact on a drug's bioavailability and its development program. During crystallization from a solution, crystals separating may consist of a pure component or be a molecular compound. Solvates are molecular complexes that have incorporated the crystallizing solvent molecule in their lattice. When the solvent incorporated in the solvate is water, it is called a hydrate. To distinguish solvates from polymorphs, which are not molecular compounds, the term pseudopolymorph is used. Identification of possible hydrate compounds is important since their aqueous solubilities can be significantly less than their anhydrous forms. Conversion of an anhydrous compound to a hydrate within the dosage form may reduce the dissolution rate and extent of drug absorption. An amorphous solid may be treated as a supercooled liquid in which the arrangement of molecules is random. Amorphous solids lack the three-dimensional long-range order found in crystalline solids. Since amorphous forms are usually of higher thermodynamic energy than corresponding crystalline forms, solubilities as well as dissolution rates are generally greater. A study on crystal form includes characterization of (l)crystal habit, (2)polymorphism, (3)pseudopolymorphism, (4)amorphous solid.

Keywords

References

  1. J. Haleblian, Characterization of habits and crystalline modification of solids and their phannaceutical applications, J. Pharm. Sci., 64, 1269-1288 (1975) https://doi.org/10.1002/jps.2600640805
  2. A. Nokhodchi, N. Bolourtchian and R. Dinarvand, Crystal modification of phenytoin using different solvents and crystallization conditions, Int. J. Pharm., 250, 85-97 (2003). https://doi.org/10.1016/S0378-5173(02)00488-X
  3. A.H.L. Chow, P.K.K. Chow, Z. Wang and D.G.W. Grant, Modifications of acetaminophen crystals: influence of growth in aqueous solutions containing p-acetoxyacetanilide on crystal properties, Int. J Pharm., 24, 239-258 (1985) https://doi.org/10.1016/0378-5173(85)90024-9
  4. M.N. Femi-Oyewo and M.S. Spring, Studies on paracetamol crystals produced by growth in aqueous solutions, Int. J Pharm., 112, 17-28 (1994) https://doi.org/10.1016/0378-5173(94)90257-7
  5. HA Garekani, J.L. Ford, M.H. Rubinstein and A.R. Rajabi-Siahboom,i, Formation and compression characteristics of prismatic polyhedral crystal and thin plate like crystals of paracetamol, Int. J Pharm., 187, 77-89 (1999) https://doi.org/10.1016/S0378-5173(99)00157-X
  6. J.D. Gordon and A.H.L. Chow, Modification of phenytoin crystals: influence of 3-propanoyloxymethyl-5, 5-diphenylhydantoin on solution-phase crystallization and related crystal properties, Int. J Pharm., 79, 171-181 (1992) https://doi.org/10.1016/0378-5173(92)90108-E
  7. K. Kachrimanis, G. Ktistis and S. Malamataris, Crystallization conditions and physicochemical properties, of ibuprofen-Eudragit Sl100 spherical crystal agglomerates prepared by the solvent-change technique, Int. J. Pharm., 173,61-74 (1998) https://doi.org/10.1016/S0378-5173(98)00191-4
  8. HA Garekani, J.L. Ford, M.H. Rubinstein and AR Rajabi-Siahboomi, Highly compressible paracetamol: crystallization and characterization, Int. J Pharm., 208, 8799 (2000)
  9. D. Kaul, N.T. Nguyen and S. Venkataram, Crystal habit modifications and altered tableting characteristics, Int. J. Pharm., 88, 345-350 (1992) https://doi.org/10.1016/0378-5173(92)90333-W
  10. P.V. Marshall and P. York, Crystallization solvent induced solid-state and particulate modifications of nitrofurantoin, Int. J Pharm., 55, 257-263 (1989) https://doi.org/10.1016/0378-5173(89)90049-5
  11. K.V.R Prasad, R.I. Ristic, D.B. Sheen and J.N. Sherwood, Crystallization of paracetamol from solution in the presence and absence of impurity, Int. J. Pharm., 215, 29-44 (2001). https://doi.org/10.1016/S0378-5173(00)00653-0
  12. J.W. Shell, X-ray and crystallographic applications in pharmaceutical research III. crystal habit quantitation, J. Pharm. Sci., 52, 100-101 (1963). https://doi.org/10.1002/jps.2600520125
  13. P.Y. Marshall and P. York, The compaction properties of nitrofurantoin samples crystallised from different solvents, Int. J. Pharm., 67, 59-65 (1991) https://doi.org/10.1016/0378-5173(91)90265-P
  14. J. Haleblian and W. McCrowne, Pharmaceutical applications of polymorphism, J Pharm. Sci., 58, 911-929 (1969) https://doi.org/10.1002/jps.2600580802
  15. R Huettenrauch, Fundamentals of Pharmaceutics, Acta Phann. Technol., 34, 1-10 (1988)
  16. A. Gruenenberg, Polymorphie und thermische Analyse pharmazeutischer Wrrkstoffe, Phannazie in unserer Zeit, 26, 224-231 (1997) https://doi.org/10.1002/pauz.19970260506
  17. YH. Kiang, A Huq, P.W. Stephens and W. Xu, Structure determination of enalapril maleate form II from HighResolution X-ray powder diffraction data, J Pharm. Sci., 92, 1844-1853 (2003) https://doi.org/10.1002/jps.10430
  18. R. Suryanarayanan, Determination of the relative amounts of anhydrous carbamazepine($C_{15}H_{12}N_{2}O$) and carbamazepine dihydrate($C_{15}H_{12}N_{2}O\cdot2H_{2}O$) in a mixture by powder X-ray diffractometry, Pharm. Res., 6, 1017-1024 (1989) https://doi.org/10.1023/A:1015970218980
  19. B. Bachet, X-ray characterization of the triclinic polymorph of carbamazepine, J Pharm. Sci., 86, 1062-1065 (1997) https://doi.org/10.1021/js960338k
  20. M.M.J. Lowes, M.R. Caira, A.P. Lotter and J.G. van der Watt, Physicochemical properties and X-ray structural studies of the trigonal polymorph of carbarnazepine, J. Pharm. Sci., 76, 744-752 (1987). https://doi.org/10.1002/jps.2600760914
  21. P.J. Cox and J.L. Wardell, Studies of polymorphism in three compounds by single crystal X-ray diffraction, Int. J. Pharm., 194, 147-153 (2000) https://doi.org/10.1016/S0378-5173(99)00364-6
  22. S. Yamamura and Y Momose, Quantitative analysis of crystalline pharmaceuticals in powders and tablets by a pattem-fitting procedure using X-ray powder diffraction data, Int. J .Pharm., 212, 203-212 (2001). https://doi.org/10.1016/S0378-5173(00)00605-0
  23. S. Rastogi, M. Zakrzewski and R. Suryanarayanan, Investigation of solid-state reactions using variable temperature X-ray powder diffractometry. I. Aspartame hemihydrate, Pharm. Res., 18, 267-273 (2001)
  24. S.K. Rastogi, M. Zakrzewski and R Suryanarayanan, Investigation of solid-state reactions using variable temperature X-ray powder diffractometry. II. Aminophylline monohydrate, Pharm. Res., 19, 1265-1273 (2002) https://doi.org/10.1023/A:1020386321876
  25. D. Giron, Thermal analysis and calorimetric methods in the characterization of polymorphs and solvates, Thermochim Acta, 248, 1-59 (1995) https://doi.org/10.1016/0040-6031(94)01953-E
  26. N. Ohnishi, T. Yokoyama and K. Kuroda, Isothermal transition of polymorphic forms of some drugs, Phann. Tech. Japan, 3, 355-360 (1987)
  27. H.H.Y Tong, B. Yu. Shekunov, P. York and A,H,L. Chow, Thermal analysis of trace levels of polymorphic impurity in salmeterol xinafoate samples, Pharm. Res., 20, 1423-1429 (2003) https://doi.org/10.1023/A:1025758127358
  28. G.L. Perlovich, L.Kr. Hansen and A. Bauer-Brandl, Interrelation between thermochemical and structural data of polymorphs exemplified by diflunisal, J. Pharm. Sci., 91, 1036-1045 (2001). https://doi.org/10.1002/jps.10043
  29. S.L. Wang, S.Y Lin and YS. Wei, Transformation of metastable forms of acetaminophen studied by thermal Fourier transform Infrared (FT-IR) microspectroscopy, Chem. Pharm. Bull., 50, 153-156 (2002) https://doi.org/10.1248/cpb.50.153
  30. M. Blanco and A Villar, Development and validation of a method for the polymorphic analysis of pharmaceutical preparations using near infrared spectroscopy, J. Pharm. Sci., 92, 823-830 (2003). https://doi.org/10.1002/jps.10337
  31. J.P Higgins, S.M. Arrivo and RA Reed, Approach to the determination of hydrate form conversions of drug compounds and solid dosage forms by near-IR spectroscopy, J. Pharm. Sci., 92, 2303-2316 (2003) https://doi.org/10.1002/jps.10465
  32. A.D. Patel, P.E. Luner and M.S. Kemper, Low-level determination of polymorph composition in physical mixtures by near-infrared reflectance spectroscopy, J. Pharm. Sci., 90, 360-370 (2001). https://doi.org/10.1002/1520-6017(200103)90:3<360::AID-JPS11>3.0.CO;2-U
  33. A.D. Patel, P.E. Luner and M.S. Kemper, Quantitative$\cdot$analysis of polymorphs in binary and multi-component powder mixtures by near-infrared reflectance spectroscopy, Int. J. Pharm., 206, 63-74 (2000). https://doi.org/10.1016/S0378-5173(00)00530-5
  34. R Suryanarayanan and T.S. Wiedmann, Quantitation of the relative amounts of anhydrous carbamazepine ($C_{15}H_{12}N_{2}O$) and carbamazepine dihydrate ($C_{15}H_{12}N_{2}O\cdot2H_{2}O$) in a mixture by solid-state nuclear magnetic resonance(NMR), Pharm. Res., 7, 184-187 (1990) https://doi.org/10.1023/A:1015889021145
  35. M. Kuhnert-Brandstaetter and A. Burger, Untersuchungen zum Aufloesungsverhalten polymorpher, pseudopolymorpher und amorpher Phasen von Arzneimitteln, Pharm. Ind., 34, 187-190 (1972).
  36. H. Junginger, Modifikationsumwandlungen dmch mechanische Bearbeitung, Pharm. Ind., 39, 68-71 (1977)
  37. G.G.Z. Zhang, e. Gu, M.T Zell, R.T. Burkahardt, E.J. Munson and D.J.W. Grant, Crystallization and transitions of sulfamerazine polymorphs, J. Pharm. Sci., 91, 1089-1100 (2002). https://doi.org/10.1002/jps.10100
  38. T.D. Davis, G.E. Peck, J.G. Stowell, K.R. Morris and S.R. Bym, Modeling and monitoring of polymorphic transformations during the drying phase of wet granulation, Pharm. Res., 21, 860-866 (2004). https://doi.org/10.1023/B:PHAM.0000026440.00508.cf
  39. S. Yada, M. Ohya, Y Ohuchi, T Hamaura, N. Wakiyama, F. Usui, A Kusai and K Yamamoto, Solid phase transition of CS-891 enantiotropes during grinding, Int. J. Pharm., 255, 69-79 (2003) https://doi.org/10.1016/S0378-5173(03)00084-X
  40. K. Urakami and A.E. Beezer, A kinetic and thermodynamic study of seratrodast polymorphic transition by isothermal microcalorimetry, Int. J. Pharm., 257, 265-271 (2003) https://doi.org/10.1016/S0378-5173(03)00139-X
  41. C. Sun and DJ.W. Grant, Influence of crystal structure on the tableting properties of sulfamerazine polymorphs, Pharm. Res., 18, 274-280 (2001) https://doi.org/10.1023/A:1011038526805
  42. T. Yoshinari, R.T. Forbes, P. York and Y. Kawashima, The improved compaction properties of mannitol after a moistureinduced polymorphic transition, Int. J. Pharm., 258, 121-131 (2003). https://doi.org/10.1016/S0378-5173(03)00157-1
  43. M. Mirmehrabi, S. Rohani, K.S. Keshava Murthy and B. Radatus, Improving the filterability and solid density of ranitidine hydrochloride form 1, J. Pharm. Sci., 93, 1692-1700 (2004) https://doi.org/10.1002/jps.20074
  44. Y.T Sohn and S.H. Jung, Effect of crystal form on dissolution and stability of droperidol, Yakhak Hoeji, 40, 375-381 (1996)
  45. Y.T. Sohn, Dissolution and transformation of crystal form of piroxicam, Yakhak Hoeji, 40, 513-521 (1996)
  46. Y.T. Sohn and S.H. Park, Effects of crystal modification of cephalothin sodium on dissolution and stability, Yakhak Hoeji, 41, 321-327 (1997)
  47. Y.T. Sohn and B.Y. Urn, Dissolution of crystal form of glibenclamide, J. Kor. Pharm. Sci., 27, 233-239 (1997)
  48. Y.T. Sohn and H.K. Kim, Dissolution of crystal form of cephotaxime sodium, J. Kor. Pharm. Sci., 28, 81-85 (1998)
  49. Y.T. Sohn and J.S. Kim, Effect of crystal form on dissolution of cephradin, J. Kor. Pharm. Sci., 28, 115-119 (1998).
  50. Y.T. Sohn and E.S. Do, Effect of crystal form on dissolution of prednisolone, J. Kor. Pharm. Sci., 33, 99-103 (2003)
  51. S. Roy, K.S. Alexander, A.T. Riga and K Chatterjee, Characterization of physical mixtures and directly compressed tablets of sulfamerazine polymorphs: Implications on in vitro release characteristics, J. Pharm. Sci., 92, 747-759 (2003) https://doi.org/10.1002/jps.10322
  52. Y. Yoshihashi, H. Kitano, E. Yonemochi and K. Terada, Quantitative correlation between initial dissolution rate and heat of fusion of drug substance, Int. J. Pharm., 204, 1-6 (2000) https://doi.org/10.1016/S0378-5173(00)00446-4
  53. A.J. Aguiar, J. Krc jun, A.W. Kinkel and Ie. Samyn, Effect of polymorphism on the absorption of chloramphenicol from chloramphenicol palmitate, J. Pharm. Sci., 56, 847-853 (1967) https://doi.org/10.1002/jps.2600560712
  54. G. Opalchenova and G.N. Kalinkova, Evaluation of a new polymorph aziocillin sodium by its antibacterial activity, Int. J. Pharm., 153, 263-265 (1997) https://doi.org/10.1016/S0378-5173(97)00087-2
  55. Y. Kobayashi, S. Ito, S. Itai and K. Yamamoto, Physicochemical properties and bioavailability of carbamazepine polymorphs and dihydrate, Int. J. Pharm., 193, 137-146 (2000) https://doi.org/10.1016/S0378-5173(99)00315-4
  56. Y.T. Sohn, Effect of polymorphism on bioavailability of amoxycillin, Yakhak Hoeji, 39, 438-443, (1995)
  57. Y.T. Sohn and S.Y. Kim, Effect of crystal form on in vivo topical anti-inflammatory activity of corticosteroids, Arch. Pharm. Res., 25, 556-559 (2002) https://doi.org/10.1007/BF02976618
  58. A Gruenenberg, Poymorphie und Thermische Analyse pharmazeutischer Wirkstoffe, Pharmazie in unserer Zeit, 26, 224-231 (1997) https://doi.org/10.1002/pauz.19970260506
  59. Y.T. Sohn, Pharmaceutical application of polymorphism, Pharmacon, 21, 500-516 (1991)
  60. L. Borka, Review on crystal polymorphism of substances in the European Pharmacopoeia (Fasculae 1 to 12), Part 1, Pharmeur., 7, 574-585 (1995)
  61. A. Burger and U.I. Griesser, Charakterisierung und Identifizierung von 11 Kristallformen von Succinylsulfathiazol, Sci. Pharm., 57, 293-305 (1989)
  62. A. Burger and R.D. Dialer, Neue Untersuchungsergebnisse von Polymorphie von Sulfathiazol, Pharm. Acta Helv., 58, 72-78 (1983)
  63. A. Burger, K. Schulte and R. Ramberger, Autklaerung thermodynamischer Beziehungen zwischen fuenf polymorphen Modifikationen von Sulfapyridin mittel DSC, J. Therm. Anal., 19, 475-484 (1980) https://doi.org/10.1007/BF01903979
  64. M.A. Moustafa, A.R. Ebian, S.A. Khalil and M.M. Motawi, Sulfamethoxydiazine crystal forms, J. Pharm. Phannacol., 23, 868-874 (1971)
  65. H.O. Lin, N.C. Baenziger and lK Guillory, Physical properties of four polymorphic forms of sulfanilamide I: Densities, refractive indexes, and X-ray diffraction measurements, J. Pharm. sci., 63, 145-146 (1974) https://doi.org/10.1002/jps.2600630140
  66. E.G. Shami, P.D. Bernardo, E.S. Rattie and L.I. Ravin, Kinetics of polymorphic transformation of sulfathiazol form I, J. Pharm. Sci., 61, 1318-1320 (1972) https://doi.org/10.1002/jps.2600610834
  67. L.S. Shenouda, Various species of sulfathiazol form I, J. Pharm. Sci., 59, 785-787 (1970) https://doi.org/10.1002/jps.2600590613
  68. A.R. Ebian, M.A. Moustafa, S.A. Khalil and M.M. Motawi, Succinylsulfathiazol crystal forms II: effect of additives on kinetics of interconversion, J. Pharm. Sci., 64, 1481-1481 (1975) https://doi.org/10.1002/jps.2600640911
  69. Y.T. Sohn, Study on polymorphism of sulfa drugs, J. Kor. Pharm. sci., 20, 35-42 (1990)
  70. B. Prodic-Kojic, Study on crystalline forms of N-cyano-N`methyl- N'- (2([(4-methyl-lH-imidazol-5-yl)methyl]thio)ethyl) guanidine (cimetidine), Gazzetta Chimica Italiana, 109, 535-539 (1979).
  71. B. Hegedues andS. Georg, The polymorphism od cimetidine, J Phann. Biomed. Anal., 3, 303-307 (1985) https://doi.org/10.1016/0731-7085(85)80037-6
  72. M. Shibata, H. Kokubo, K Morimoto, K Morisaka, T. Ishida and M. Inoue, X-ray structural studies and physicochemical properties of cimetidine polymorphism, J. Pharm. Sci., 72, 1436-1442 (1983) https://doi.org/10.1002/jps.2600721217
  73. A. Bauer-Brandl and Y.T. Sohn, Crystal modifications of cimetidine: characterization and evaluation for manufacturing of dosage forms, Eur. J. Pharm. Biopharm., 40(Suppl.), 6S (1994)
  74. Y.T. Sohn and K.S. Kim, Study on polymorphism of cimetidine, J. Kor. Pharm. Sci., 23, 81-87 (1993)
  75. M. Kuhnert-Brandstaetter and H. Winkler, Thermoanalytische und IR-spektroskopische Untersuchungen an verschiedenen Kristallformen von Arzneistoffen aus der Oestradiol- und Androstangruppe, Sci. Pharm., 44, 288-299 (1976)
  76. AT. Florence and E.G. Salole, Changes in crystallinity and solubility on comminution of digoxin and observations on spironolactone and oestradiol, J. Pharm. Phanncol., 28, 637-642 (1976) https://doi.org/10.1111/j.2042-7158.1976.tb02817.x
  77. M. Muramatsu, M. Iwahashi and U. Takeuchi, Thennodynamic relationship between $\alpha-and$ $\beta-forms$ of crystalline progesterone, J. Pharm. Sci., 68, 175-177 (1979) https://doi.org/10.1002/jps.2600680214
  78. J.K Haleblian, R.T. Koda and lA Biles, Isolation and characterization of some solid phases of fluprednisolone, J. Pharm. Sci., 60, 1485-1488 (1971) https://doi.org/10.1002/jps.2600601008
  79. A Chauvet, R. Perrier and l Masse, Etude thermoanalytique de quelques steroides. I. testosterone et derives, Thermochimica Acta, 43, 161-172 (1981) https://doi.org/10.1016/0040-6031(81)80005-6
  80. E. Smakula, A Gari and H.H. Wotiz, Effects of polymorphism and influence of sample preparation on the infra-red spectrum of estradiol-17$\beta$, Spectrochimica Acta, 9, 346-356 (1957) https://doi.org/10.1016/0371-1951(57)80150-7
  81. H.G. Ibrahim, F. Pisano and A Bruno, Polymorphism of phenylbutazone: properties and compressional behavior of crystals,. Pharm. Sci., 66, 669-673 (1977) https://doi.org/10.1002/jps.2600660515
  82. M.D. Tuladhar, J.E. Carless and M.P. Summers, The effects of polymorphism, particle size and compression pressure on the dissolution rate of phenylbutazone tablets, J. Pharm. Pharmacol., 35, 269-274 (1983) https://doi.org/10.1111/j.2042-7158.1983.tb02932.x
  83. M.D. Tuladhar, J.E. Carless and M.P. Summers, Thermal behavior and dissolution properties of phenylbutazone polymorphs, J. Pharm. Pharmacol., 35, 208-214 (1983) https://doi.org/10.1111/j.2042-7158.1983.tb02914.x
  84. J. Matsunaga, N. Nambu and T. Nagai, Polymorphism of phenylbutazone, Chern. Pharm. Bull., 24, 1169-1172 (1976) https://doi.org/10.1248/cpb.24.1169
  85. Y.T. Sohn and E.H. Lee, Crystal form of cephazoline sodium hydrate, Yakhak Hoeji, 40, 306-310 (1996)
  86. Y.T. Sohn and I.J. Chun, Crystal form of cefaclor, J. Kor Phann. Sci., 30, 201-206 (2000)
  87. Y.T. Sohn and S.Y Kim, Study on polymorphism of cephalexin, Duksung Bull. Pharm. Sci., 7, 1-8 (1996)
  88. J. Bordner, J.A. Richards, P. Weeks and E.B. Whipple, Piroxicam monohydrate: a zwitterionic form $C_{15}H_{13}N_{3}O_{4}S.H_{2}O$, Acta Crystallogr., C40, 989-990 (1984).
  89. G.A .Ghan and J.K Lalla, Effect of compressional forces on piroxicam polymorphs, J. Pharm. Pharmacol., 44, 678-681 (1992) https://doi.org/10.1111/j.2042-7158.1992.tb05494.x
  90. M. Janik, Z. Malarski, J. Mrozinski, l Wajcht and Z. Zborucki, Influence of solvent effect on polymorphism of 4hydroxy- 2-methyl-N-2-pyridy1-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide (piroxicam), J. Crystallogr. Spec. Res., 21, 519-522 (1991) https://doi.org/10.1007/BF01160669
  91. B. Kojic-Prodic and Z. Ruzic-Toros, Structure of the antiinflammatory drug 4-hydroxy-2-methyl-N-2-pyridyl-2H1,2- benzothiazine-3-carboxamide-1,1-dioxide (piroxicam), Acta Crystallogr., B38, 2948-2951 (1982)
  92. M. Kuhnert-Brandstaetter and R Voellenklee, Thermoanalytische und IR-spektroscopische Untersuchungen an polymorphen Arzneistoffen: Acemetacin, Piroxicam, Propranolohydrochlorid und Urapidil, Frasenius Z. Anal. Chem., 322, 164-169 (1985) https://doi.org/10.1007/BF00517654
  93. M. Mihalic, H. Hofman, F. Kafez, J. Kuftinec, N. Blazvic and M. Zinic, Physico-chemical and analytical characteristics of piroxicam, Acta Phann. Jugosl., 32, 13-20 (1982)
  94. G. Reck, G. Dietz, G. Laban, W Guenther, G. Banier and E. Hoehne, X-ray studies on piroxicam modifications, Phannazie, 43, 477-481 (1988)
  95. G. Reck and G. Laban, Prediction and establishment of a new crystalline piroxicam modification, Phannazie, 45, 257-259 (1990)
  96. F. Vrecer, S. Srcic and J. Smid-Korbar, Investigation of piroxicam polymorphism, Int. J. Pharm., 68, 35-41 (1991) https://doi.org/10.1016/0378-5173(91)90124-7
  97. E. Shefter and T. Higuchi, Dissolution behavior of crystalline solvated and nonsolvated forms of some pharmaceuticals, J. Pharm. Sci., 52, 781-791 (1963) https://doi.org/10.1002/jps.2600520815
  98. M. Kuhnert-Brandstaetter and G. Lehner, Differentialthermoanalytische und IR-spektroskopische Untersuchungen von Arzneistoffen, die als Hydrate vorliegen, Sci. Pharm., 52, 267-279 (1984)
  99. A. Burger and A. Lettenbichler, Polymorphie und Pseudopolymorphie von Acemetacin, Phannazie, 48, 262-272 (1993)
  100. J.W. Poole and C.K. Bahal, Dissolution Behavior and solubility of anhydrous and trihydrate forms of ampicillin, J. Pharm. Sci., 57, 1945-1948 (1968) https://doi.org/10.1002/jps.2600571124
  101. M.C. Tros de llarduya, C. Martin, M.M. Goni and M.C. Martinez-Uharriz, Dissolution rate of polymorphs and two new pseudopolymorphs of sulindac, Drug Dev. Ind. Pharm., 23, 1095-1098 (1997) https://doi.org/10.3109/03639049709150498
  102. M.U.A. Ahlqvist and L.S. Taylor, Water diffusion in hydrated crystalline and amorphous sugars monitored using HID exchange, J. Pharm. Sci., 91, 690-698 (2002) https://doi.org/10.1002/jps.10068
  103. M.C. Tros de Ilarduya, C. Martin, M.M. Goni and M.C. Martinez-Oharriz, Polymorphism of sulindac: Isolation and characterization of a new polymorph and three new solvates, J. Pharm. Sci., 86, 248-251 (1997) https://doi.org/10.1021/js9601748
  104. Z. Dong, B.E. Padden, J.S. Salsbury, EJ. Munson, SA Schroeder, I. Prakash and DJ.W Grant, Neotame anhydrate polymorphs I: Preparation and characterization, Pharm. Res., 19, 330-336 (2002) https://doi.org/10.1023/A:1014403320457
  105. A.K. Dash, Y. Mo and A Pyne, Solid-state properties of creatine monohydrate, J. Pharm. Sci., 91, 708-718 (2002) https://doi.org/10.1002/jps.10073
  106. S. Ito, M. Nishimura, Y. Kobayashi, S. Itai and K. Yamamoto, Characterization of polymorphs and hydrates of GL-128, a serotonin3 receptor antagonist, Int. J. Pharm., 151, 133-143 (1997) https://doi.org/10.1016/S0378-5173(97)04867-9
  107. A. Jorgensen, J. Rantanen, M. Karjalainen, L. Khriachtchev, E. Rasanen and J. Yliruusi, Hydrate formation during wet granulation studied by spectroscopic methods and multivariate analysis, Pharm. Res., 19, 1285-1291 (2002) https://doi.org/10.1023/A:1020621906855
  108. S.Y. Lin and J.L. Chien, In vitro simulation of solid-solid dehydration, rehydraton, and solidification of trehalose dihydrate using thermal and vibrational spectroscopic techniques, Pharm. Res., 20, 1926-1931 (2003) https://doi.org/10.1023/B:PHAM.0000008038.38378.d6
  109. E. Rasanen, J. Rantanen, A. Jorgensen, M. Karjalainen, T. Paakkari and J. Yliruusi, Novel identification of pseudopolymorphic changes of theophylline during wet granulation using near infrared spectroscopy, J. Pharm. Sci., 90, 389-396 (2001) https://doi.org/10.1002/1520-6017(200103)90:3<389::AID-JPS13>3.0.CO;2-9
  110. Z. Dong, J.S. Salsbury, D. Zhou, EJ. Munson, SA Schroeder, I. Prakash, S. Vyazovkin, C.A Wight and DJ.W Grant, Dehydration kinetics of Neotame monohydrate, J. Pharm. Sci., 91, 1423-1431 (2002) https://doi.org/10.1002/jps.10153
  111. H. Zhu and DJ. W Grant, Dehydration behavior of nedocromil magnesium pentahydrate, Int. J. Pharm., 215, 251-262 (2001) https://doi.org/10.1016/S0378-5173(00)00700-6
  112. RG. Brittain, Fluorescence studies of the transformation of carbamazepine anhydrate form III to its dihydrate phase, J. Pharm. Sci., 93, 375-383 (2004) https://doi.org/10.1002/jps.10527
  113. N. Rodriguez-Hornedo and D. Murphy, Surfactant-facilitated crystallization of dihydrate carbamazepine during dissolution of anhydrous polymorph, J. Pharm. Sci., 93, 449-460 (2004) https://doi.org/10.1002/jps.10496
  114. N. Rodriguez-Hornedo and D. Murphy, Surfactant-facilitatedn crystallization of dihydrate carbamazepine during dissolution of anhydrous polymorph, J. Pharm. Sci., 93, 449-460 (2004) https://doi.org/10.1002/jps.10496
  115. L.S. Taylor and P. York, Characterization of the phase transitions of trehalose dihydrate on heating and subsequent dehydration, J. Pharm. Sci., 87, 347-355 (1998) https://doi.org/10.1021/js970239m
  116. L.R. Hilden and K.R. Morris, Physics of amorphous solids, J. Pharm. Sci., 93, 3-12 (2004) https://doi.org/10.1002/jps.10489
  117. B.C. Hancock and G. Zografi, Characteristics and significance of the amorphous state in pharmaceutical systems, J. Pharm. Sci., 86, 1-12 (1997) https://doi.org/10.1021/js9601896
  118. L. Yu, Amorphous pharmaceutical solids. Preparation, characterization and stabilization, Adv. Drug Del. Rev., 48, 27-42 (2001) https://doi.org/10.1016/S0169-409X(01)00098-9
  119. D.Q.M. Craig, P.G. Royall, Y.L. Kett and M.L. Hopton, The relevance of the amorpous state to pharmaceutical dosage forms: Glassy drugs and freeze dried systems., Int. J. Pharm., 179, 179-207 (1999) https://doi.org/10.1016/S0378-5173(98)00338-X
  120. E.C. van Tonder, T.S.P. Maleka, W Liebenberg, M. Song, D.E. Wurster and M.M. de Villiers, Preparation and physicochemical properties of niclosarnide anhydrate and two monohydrates, Int. J. Pharm., 269, 417-432 (2004) https://doi.org/10.1016/j.ijpharm.2003.09.035
  121. I. Nikolakakis, K. Kachrimanis and S. Malamataris, Relations between crystallisation conditions and micromeritic properties of ibuprofen, Int. J. Pharm., 201, 79-88 (2000) https://doi.org/10.1016/S0378-5173(00)00398-7
  122. X.C. Tang, MJ. Pikal and L.S. Taylor, The effect of temperature on hydrogen bonding in crystalline and amorphous phases in dihydropyrine calcium channel blockers, Pharm. Res., 19, 484-490 (2002) https://doi.org/10.1023/A:1015199713635
  123. X.C. Tang, MJ. Pikal and L.S. Taylor, A spectroscopic investigation of hydrogen bond patterns in crystalline and amorphous phases in dihydropyrine calcium channel blockers, Pharm. Res., 19, 477-483 (2002) https://doi.org/10.1023/A:1015147729564
  124. N. Boutonnet-Fagegaltier, J. Menegotto, A Lamure, R Duplaa, A Caron, C. Lacabanne and M. Bauer, Molecular mobility study of amorphous and crystalline phases of a pharmaceutical product by thermally stimulated current spectrometry, J. Pharm. Sci.,91, 1548-1560 (2002) https://doi.org/10.1002/jps.10146
  125. Y. Aso, S. Yoshioka and S. Kojima, Explanation of the crystallization rate of amorphous nifedipine and phenobarbital from their molecular mobility as measured by 13C nuclear magnetic resonance relaxation time and the relaxation time obtained from the heating rate dependence of the glass transition temperature, J Pharm. Sci., 90, 798-806 (2001) https://doi.org/10.1002/jps.1033
  126. T. Yoshinari, R.T. Forbes, P. York and Y. Kawashima, Crystallisation of amorphous mannitol is retarded using boric acid, Int. J. Pharm., 258, 109-120 (2003) https://doi.org/10.1016/S0378-5173(03)00155-8
  127. T. Oguchi, N. Sasaki, T. Hara, Y. Tozuka and K. Yamamoto, Differential thermal crystallization from amorphous chenodeoxycholic acid between the ground specimens derived from the polymorphs, Int. J Pharm., 253, 81-88 (2003) https://doi.org/10.1016/S0378-5173(02)00675-0
  128. R. Surana, A. Pyne and R. Suryanarayanan, Effect of agingn on the physical properties of amorphous trehalose, Pharm. Res., 21, 867-874 (2004) https://doi.org/10.1023/B:PHAM.0000026441.77567.75
  129. R. Price and P.M. Young, Visualization of the crystallization of lactose from the amorphous state, J Pharm. Sci., 93, 155-64 (2004) https://doi.org/10.1002/jps.10513
  130. A. Pyne, K. Chatterjee and R Suryanarayanan, Crystalline to amorphous transition of disodium hydrogen phosphate during primary drying, Pharm. Res., 20, 802-803 (2003) https://doi.org/10.1023/A:1023445905372
  131. Y. Aso, S. Yoshioka and S. Kojima, Explanation of the crystallization rate of amorphous nifedipine and phenobarbital from their molecular mobility as measured by $^{13}C$.nuclear magnetic resonance relaxation time and the relaxation time obtained from the heating rate dependence of the glass transition temperature, J Pharm. Sci., 90, 798-806 (2001) https://doi.org/10.1002/jps.1033
  132. C. Telang, L. Yu and R. Suryanarayanan, Effective inhibition of mannitol crystallization in frozen solutions by sodium chloride, Pharm. Res., 20, 660-667 (2003) https://doi.org/10.1023/A:1023263203188
  133. A. Saleki-Gerhardt and G. Zografi, Non-isothermal and isothermal crystallization of sucrose from the amorphous state, Pharm. Res., 11, 1166-1173 (1994) https://doi.org/10.1023/A:1018945117471
  134. N. Rodriguez-Hornedo and D. Murphy, Significance of controlling crystallization mechanisms and kinetics in pharmaceutical systems, J Pharm. Sci., 88, 651-660 (1999) https://doi.org/10.1021/js980490h
  135. MS.L. Price, The computational prediction of pharmaceuticaln crystal structures and polymorphism, Advanced Drug Delivery Reviews, 56, 301-319 (2004) https://doi.org/10.1016/j.addr.2003.10.006
  136. A,S, Raw, M.S. Furness, D.S. Gill, R.C. Adams, F.O. Holcombe Jr. and L.X. Yu, Regulatory considerations of pharmaceutical solid polymorphism in abbreviated new drug applications (ANDA), Advanced Drug Delivery Reviews, 56, 397-414 (2004) https://doi.org/10.1016/j.addr.2003.10.011