DOI QR코드

DOI QR Code

Optical Properties of Semiconductors Depending on the Contact Characteristic Between Different Groups

이종 물질의 접합계면에 의한 반도체 물질의 광학적 특성

  • Received : 2013.12.09
  • Accepted : 2013.12.31
  • Published : 2014.02.01

Abstract

To observe the optical characteristic of oxide semiconductor depending on the degree of bonding structures, SiOC, ZnO and IGZO were prepared by the RF magnetron sputter system and chemical vapor deposition. Generally, crystal ZnO, amorphous SiOC and IGZO changed the optical characteristics in according to the electro-chemical behavior due to the oxygen vacancy at an interface between different groups. Transmittance of SiOC and IGZO with amorphous structures was higher than that of ZnO with crystal structure, because of lowering the carrier concentration due to the recombination of electron and holes carriers as oxygen vacancies. Besides, the energy gap of amorphous SiOC and IGZO was higher than the energy gap of crystal ZnO. The diffusion mobility of holes is higher than the drift mobility of electrons.

Keywords

References

  1. J. C. K. Lam, M. Y. M. Huang, T. H. Ng, M.K.B. Dawood, F. Zhang, A. Du, H. Sun, Z. Shen, and Z. Mai, Appl. Phys. Lett., 102, 022908 (2013). https://doi.org/10.1063/1.4776735
  2. S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki1, Appl. Phys. Lett., 93, 123309 (2008). https://doi.org/10.1063/1.2989125
  3. H. Hosono, Journal of Non-Crystalline Solids, 35, 2851 (2006).
  4. S. W. Tsao, T. C. Chang, S. Y. Huang, M. C. Chen, S. C. Chen, C. T. Tsai, Y. J. Kuo, Y. C. Chen, and W. C. Wub, Solid-State Electronics 54, 1497 (2010). https://doi.org/10.1016/j.sse.2010.08.001
  5. K. Nomura, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, Appl. Phys. Lett., 93, 192107 (2008). https://doi.org/10.1063/1.3020714
  6. D. Kot, T. Mchedlidze, G. Kissinger, and W. Von Ammonc, ECS Journal of Solid State Science and Technology, 2, P9 (2013)
  7. J. S. Park, W. J. Maeng, H. S. Kim, and J. S. Park, Thin Solid Films, 520, 1679 (2012). https://doi.org/10.1016/j.tsf.2011.07.018
  8. W. T. Chen, S. Y. Lo, S. C. Kao, H. W. Zan, C. C. Tsai, J. H. Lin, C. H. Fang, and C. C. Lee, IEEE Electron. Dev. Lett., 32, 1552 (2011). https://doi.org/10.1109/LED.2011.2165694
  9. C. C. Lo and T. E. Hsieh, Ceramics International, 38, 3977 (2012). https://doi.org/10.1016/j.ceramint.2012.01.052
  10. M. E. Lopes, H. L. Gomes, M. C. R. Medeiros, P. Barquinha, L. Pereira, E. Fortunato, R. Martins, and I. Ferreira, Appl. Phys. Lett., 95, 063502 (2009). https://doi.org/10.1063/1.3187532
  11. J. Maserjian and N. Zamani, Appl. Phys. Lett., 53, 559 (1982).
  12. J. G. Simmons, Phys. Rev., 155, 657 (1967). https://doi.org/10.1103/PhysRev.155.657
  13. O. Mitrofanov and M. Mantra, J. Appl. Phys., 95, 6414 (2004). https://doi.org/10.1063/1.1719264
  14. T. Oh, IEEE Trans. Nanotechnology, 5, 23 (2006) https://doi.org/10.1109/TNANO.2005.858591
  15. T. Oh and C. K. Choi, J. Korean Phys. Soc., 56, 1150 (2010) https://doi.org/10.3938/jkps.56.1150