• 제목/요약/키워드: amorphous solid water

검색결과 41건 처리시간 0.021초

고체분산체로부터 비페닐디메칠디카르복실레이트의 용출 및 투과 증전 (Enhanced Dissolution and Permeation of Biphenyl Dimethyl Dicarboxylate Using Solid Dispersions)

  • 문지현;전인구
    • Journal of Pharmaceutical Investigation
    • /
    • 제29권3호
    • /
    • pp.227-234
    • /
    • 1999
  • Solid dispersions were prepared to increase the dissolution rate of biphenyl dimethyl dicarboxylate (DDB) using water-soluble carriers such as povidone, copolyvidone, $2-hydroxypropyl-{\beta}-cyclodextrin (HPCD)$, sodium salicylate or sodium benzoate by solvent evaporation method. Solid dispersions were characterized by infrared spectrometry, differential scanning calorimetry (DSC) and powder X-ray diffractometry, dissolution and permeation studies. DDB tablets (7.5 mg) were prepared by compressing the powder mixtures composed of solid dispersions, lactose, com starch, crospovidone and magnesium stearate using a single-punch press. DDB capsules (7.5 mg) were also prepared by filling the mixtures in empty hard gelatin capsules (size No.1). From the DSC and powder x-ray diffractometric studies, it was found that DDB was amorphous in the HPCD or copolyvidone solid dispersions. Dissolution rates after 10 min of DDB alone and solid dispersions (1 : 10) in sodium benzoate, sodium salicylate and copolyvidone were 11.8, 23.5, 22.8 and 82.5%, respectively. Dissolution rates of DDB after 30 min from 1 : 10 and 1 : 20 copolyvidone solid dispersions were 80.5 and 95.0%, respectively. For the DDB tablets prepared using solid dispersions (1 : 20), the initial dissolution rate was dependent on carrier material, and was ranked in order, $Kollidon\;30\;{\ll}$ copolyvidone < HPCD. For the HPCD solid dispersion tablets, dissolution rate reached 97.4% after 15 min, but thereafter slowly decreased to 80.7% after 2 hr due to the precipitation of DDB. However, in the case of copolyvidone solid dispersion tablets, dissolution increased linearly and reached 93.4% after 2 hr. Reducing the volume of test medium from 900 to 300 ml markedly decreased the dissolution rate of the tablets containing 1 : 20 HPCD solid dispersions and 1 : 10 copolyvidone solid dispersion. For 1 : 20 copolyvidone solid dispersion tablets, there was no significant change in dissolution rate up to 1 hr with different volumes of test medium. Preparation of the copolyvidone solid dispersion (1 : 20) in capsules markedly delayed the dissolution (31.2 % after 2hr) due to the limited diffusion within capsules. The permeation rate $(13.4\;g/cm^2\;after\;8\;hr)$ of DDB through rabbit duodenal mucosa from copolyvidone solid dispersion (1 : 10) was markedly enhanced, when compared with drug alone or physical mixtures. From overall findings, DDB formulations containing copolyvidone solid dispersions (1 : 20) could be used to remarkably improve the dissolution rate in dosage form of powders and tablets.

  • PDF

Physicochemical Characterization of Extrudate Solid Formulation of Angelica gigas Nakai Prepared by Hot Melt Extrusion Process

  • Azad, Md Obyedul Kalam;Cho, Hyun Jong;Koo, Ja Seong;Park, Cheol Ho;Kang, Wie Soo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 춘계학술발표회
    • /
    • pp.72-72
    • /
    • 2018
  • The root of Angelica gigas Nakai (AGN) is used as a traditional herbal medicine in Korea for the treatment of many diseases. However, a major challenge associated with the usage of the active compounds from AGN is their poor water solubility. Therefore, this work aimed to enhance the solubility of active compounds by a chemical (viz. surfactant) and physical (hot melt extrusion) crosslinking method (CPC). Infrared Fourier transform spectroscopy (FT-IR) revealed multiple peaks in extrudate solids representing new functional groups including carboxylic acid, alkynes and benzene derivatives. Differential scanning calorimetry (DSC) analysis of the extrudate showed lower glass transition temperature (Tg) and lower enthalpy (${\Delta}H$) (Tg: $43^{\circ}C$; ${\Delta}H$: <6 (J/g)) compared to the non-extrudate (Tg $68.5^{\circ}C$; ${\Delta}H$: 123.2) formulations. X-ray powder diffraction (XRD) analysis revealed amorphization of crystal materials in extrudate solid. In addition, nanonization, enhanced solubility and higher extraction of phenolic compounds were achieved in the extrudate solid. Among the different extrudates, acetic acid- and Span 80-mediated formulations showed superior extractions. We conclude that the CPC method successfully enhanced the production of amorphous nano dispersions from extrudate solid formulations.

  • PDF

시부트라민 고체 분산체의 특성화 및 조절된 방출거동 (Characterization and Controlled Release of Solid Dispersed Sibutramine)

  • 박정수;구정;이준희;김윤태;박종학;안식일;모종현;이해방;강길선
    • Journal of Pharmaceutical Investigation
    • /
    • 제38권2호
    • /
    • pp.119-126
    • /
    • 2008
  • Solid dispersions of poorly water-soluble drug, sibutramine, were prepared with hydrophilic polymer, poly-N-vinylpyrrolidone (PVP), hydroxypropylmethylcellulose (HPMC) and organic acid, citric acid, to improve the solubility of drug. Physicochemical variation and shape of microsphere were characterized by scanning electron microscopy (SEM), differential scanning calorimeter (DSC) and Fourier-transform infrared spectroscopy (FT-IR). Microspheres containing additives showed more spherical shape than non additive microspheres. In vitro release behavior of microspheres presented at simulated gastric fluid (pH 1.2) and simulated intestinal fluid (pH 6.8). The solid dispersion form transformed the drug into an amorphous state and dramatically improved its dissolution rate. These data suggest that the solid dispersion technique is an effective approach for developing the appetite depressant drug products and various pharmaceutical excipients are able to control the release behaviors.

가용화 조성물을 함유한 PVP형 고체분산체의 제조 및 특성 (Preparation and Dissolution of Polyvinylpyrrolidone(PVP)-Based Solid Dispersion Systems Containing Solubilizers)

  • 조청일;김태완;최춘영;권경애;이범진
    • Journal of Pharmaceutical Investigation
    • /
    • 제33권1호
    • /
    • pp.7-14
    • /
    • 2003
  • The PVP-based solid dispersion systems (SDs) containing lovastatin (LOS) and solubilizers (sodium lauryl sulfate, tween 80 and oleic acid) were prepared to enhance dissolution rate of practically water insoluble LOS using solvent evaporation method. Two different organic cosolvents either acetone/ethanol or acetonitrile/ethanol were used for the preparation of SDs. The LOS contents were highly decreased when acetone/ethanol cosolvents were used. The decrease of LOS contents was not caused by acetonitrile or acetone, based on HPLC data. The surface morphology as investigated by scanning electron microscope (SEM) and angle of repose as an index of flowability of SDs were highly dependent on the type and amount of solubilizers used. Based on differential scanning calorimetry (DSC) and X-ray powder diffraction data, the SDs made crystalline LOS into amorphous structure or partially eutectic mixtures. The simultaneous use of the solubilizers in SDs was also useful to increase dissolution rate of LOS in gastric or intestinal fluid. The SDs containing solubilizers reached 76% and 60% in gastric and intestinal fluid, respectively but the commercial tablet gave only less than 4%. These solubilizers in SDs could be also applicable for enhancing dissolution and bioavailability of poorly water-soluble drugs.

유화제 첨가 용융압출을 이용한 참당귀 성형체의 페놀성분 나노화 및 용해도 향상 (Enhancement of Solubility and Nanonization of Phenolic Compound in Extrudate from Angelica gigas Nakai by Hot Melt Extrusion using Surfactant)

  • ;조현종;고은지;임정대;박철호;강위수
    • 한국약용작물학회지
    • /
    • 제26권4호
    • /
    • pp.317-327
    • /
    • 2018
  • Background: The root of Angelica gigas Nakai is used as a traditional herbal medicine in Korea for the treatment of many diseases. However, the poor water solubility of the active components in A. gigas Nakai is a major obstacle to its bioavailability. Methods and Results: This work aimed at enhancing the solubility of the active compounds of A. gigas Nakai by a chemical (using a surfactant) and physical (hot melt extrusion, HME) crosslinking method. Fourier transform infrared spectroscopy revealed multiple peaks in the case of the extrudate solids, attributable to new functional groups including carboxylic acid, alkynes, and benzene derivatives. Differential scanning calorimetry analysis showed that the extrudate soilid had a lower glass transition temperature ($T_g$) and enthalpy (${\Delta}H$) ($T_g:43^{\circ}C$, ${\Delta}H$ : < 6 J/g) as compared to the non-extrudate ($T_g:68.5^{\circ}C$, ${\Delta}H:123.2$) formulations. X-ray powder diffraction analysis revealed the amorphization of crystalline materials in the extrudate solid. In addition, enhanced solubility (53%), nanonization (403 nm), and a higher amount of extracted phenolic compounds were achieved in the extrudate solid than in the non-extrudate (solubility : 36%, nanonization : 1,499 nm) formulation. Among the different extrudates, acetic acid and span 80 mediated formulations showed superior extractions efficiency. Conclusions: HME successfully enhanced the production of amorphous nano dispersions of phenolic compound including decursin from extrudate solid formulations.

다공성의 캐리어를 이용한 티카그렐러 함유 고형의 자가 나노유화 약물전달시스템 개발 (Development of Solid Self-nanoemulsifying Drug Delivery Systems of Ticagrelor Using Porous Carriers)

  • 최형주;김경수
    • 생명과학회지
    • /
    • 제31권5호
    • /
    • pp.502-510
    • /
    • 2021
  • 자가 나노유화 약물전달시스템(SNEDDS)은 오일, 계면활성제, 공계면활성제의 균질한 혼합물로서 가벼운 교반에 의해도 에멀전 형성이 가능하고 분산 시 200 nm 이하 범위의 입자 크기를 갖는 나노 에멀전을 형성하는 약물 수송체를 말한다. SNEDDS는 난용성이며 생체이용률이 낮은 소수성약물의 흡수율을 높일 수 있는 뛰어난 가용화 방법으로 알려져 있다. 본 연구에서는 난용성인 티카그렐러에 대한 용해도가 높은 유상으로 MCT oil과, 계면활성제로 Tween 80, 공계면활성제로 Labrafil M1944CS를 사용하여 SNEDDS를 개발하고, 분무건조기술을 이용하여 다양한 다공성의 캐리어에 흡착시켜 고형의 SNEDDS를 제조하였다. 제조된 고형의 SNEDDS에 대하여 물리화학적 특성 및 분말특성을 평가한 후 용출시험을 진행하였다. 본 연구를 통해 얻어진 다공성의 캐리어에 흡착시켜 만들어진 다양한 고형 SNEDDS에서 티카그렐러의 결정형은 무정형으로 변환된 것을 확인할 수 있었다. 또한 제조된 고형의 SNEDDS 조성물들은 모두 원료에 비하여 우수한 용출양상을 나타내는 것을 확인할 수 있었다. 특히 이산화규소를 통해 얻어진 고형의 SNEDDS 조성물의 입자크기와 다분산지수가 제일 작았으며 흐름성과 압축성도 제일 우수하였다. 따라서 이산화규소를 통해 얻어진 고형의 SNEDDS 조성물은 난용성인 티카그렐러의 경구 고형제제화 연구에 적합한 약물 전달 시스템인 것을 확인할 수 있었다.

PVP K30/Eudragit EPO에 의한 셀레콕시브 고체분산체의 용출률 향상 및 특성 (Characterization and Improvement of Dissolution Rate of Solid Dispersion of Celecoxib in PVP K30/Eudragit EPO)

  • 전대연;장지은;이정환;양재원;박상미;임동권;강길선
    • 폴리머
    • /
    • 제38권4호
    • /
    • pp.434-440
    • /
    • 2014
  • 셀레콕시브는 높은 결정성을 갖는 난용성 약물로서 이러한 난용성 약물의 용해도를 증진시키기 위해 고체분산법을 바탕으로 한 분무건조기를 이용하여 고체분산체를 제조하였다. PVP K30과 Eudragit EPO를 수용성 담체로 사용하였고 폴록사머 407은 계면활성제로 사용하였다. 제조된 셀레콕시브 고체분산체의 특성을 SEM, DSC, XRD 그리고 FTIR을 이용하여 확인하였다. SEM과 DSC 그리고 XRD를 통하여 셀레콕시브 고체분산체가 무정형임을 알 수 있었다. 제조된 고체분산체는 pH 1.2에서 용출을 실시하였으며 시판제인 Celebres$^{(R)}$ 용출률을 비교하였으며 분무건조를 통해 제조한 고체분산체가 Celebres$^{(R)}$보다 용출률이 크다는 것을 확인하였다.

아세클로페낙 고체분산체의 특성 및 용출률 개선 (Characterization and Improved Dissolution Rate of Aceclofenac Solid Dispersion)

  • 김윤태;박현진;이영현;홍희경;엄신;김용기;이은용;최명규;이재준;조용백;강길선
    • 폴리머
    • /
    • 제33권6호
    • /
    • pp.596-601
    • /
    • 2009
  • 아세클로페낙은 높은 결정성을 갖는 난용성 약물이다. 이러한 난용성 약물의 용해도를 증진시키기 위해서 고체분산법을 바탕으로 한 분무건조기를 이용하여 미립구를 제조하였다. PVP-K30을 수용성 담체로 사용하였고 폴록사머는 계면활성화제로 사용하였다. 제조된 아세클로페낙 고체분산체의 특성을 SEM, DSC, XRD 그리고 FT-IR을 이용하여 확인하였다. SEM, DSC, XRD을 통하여 아세클로페낙 고체분산체가 무정형임을 알 수 있었고 FT-IR을 통하여 아세클로페낙과 PVP-K30간에 수소결합을 통해 염을 형성하고 있다는 것을 확인할 수 있었다. 제조된 미립구는 pH 6.8에서 방출을 실시하였으며 시판제인 $Airtal^{(R)}$과 용출률을 비교하였으며 분무건조를 통해 제조한 미립구가 시판제인 $Airtal^{(R)}$ 보다 용출률이 크다는 것을 확인하였다.

시클로텍스트린 포접복합체 형성에 의한 항바이러스제 아시클로버의 용출속도 및 생체이용률 (Dissolution Rate and Bioavailability of Acyclovir, Antiviral Agent, by Cyclodextrin Inclusion Complexation)

  • 박승현;김하형;이광표
    • Journal of Pharmaceutical Investigation
    • /
    • 제28권4호
    • /
    • pp.257-266
    • /
    • 1998
  • To improve the solubility and dissolution rate of acyclovir (ACV), which is low oral bioavailability due to its properties of slight solubility in water and incomplete gastrointestinal absorption, the solid inclusion complexes of ACV with ${\alpha}CD$, ${\beta}CD$, $DM{\beta}CD$ in molar ratio of 1:1 were prepared by the freeze-drying method. The inclusion complexes were investigated by solubility study, UV, IR and DSC. The dissolution rate of ACV was significantly increased by ACV-CDs inclusion complex formation in artificial intestinal fluid at pH 6.8. The enhanced dissolution rate of ACV could be due to an increase of solubility and the formation of an amorphous structures through inclusion complexation with CDs. Especially, $ACV-DM{\beta}CD$ inclusion complex enhanced the maximum plasma concentration levels and AUC following oral administration compared to those of ACV alone. The present results suggest that $ACV-DM{\beta}CD$ inclusion complex serves as a potential carrier for improving the solubility, the dissolution rate and the bioavailability of ACV.

  • PDF

담즙산염과의 고체분산체로부터 로바스타틴의 용출 및 십이지장 점막 투과 특성 (Dissolution and Duodenal Permeation Characteristics of Lovastatin from Bile Salt Solid Dispersions)

  • 전인구
    • Journal of Pharmaceutical Investigation
    • /
    • 제39권2호
    • /
    • pp.97-106
    • /
    • 2009
  • Although lovastatin (LS) is widely used in the treatment of hypercholesterolemia, its bioavailability is known to be around 5%. This study was aimed to increase the solubility and dissolution-permeation rates of LS using solid dispersions (SDs) with bile salts. The solubilities of LS in water, aqueous bile salt solutions and non-aqueous vehicles were determined, and effects of bile salts on the cellulose or duodenal permeation of LS from SDs were evaluated using a horizontal permeation system. SDs were prepared at various ratios of LS to carriers, such as sodium deoxycholate (SDC), sodium glycocholate (SGC) and/or 2-hydroxypropyl-$\beta$-cyclodextrin (HPCD). The addition of bile salts (25 mM) in water increased markedly the solubility of LS by the micellar solubilization. Some non-aqueous vehicles were effective in solubilizing LS. From differential scanning calorimetric studies, it was found that the crystallinity of LS in SDs disappeared, indicating a formation of amorphous state. The SDs showed markedly enhanced dissolution compared with those of their physical mixtures (PMs) and drug alone. In the dissolution-permeation studies using a cellulose membrane, the donor and receptor solutions were maintained as a sink condition using pH 7.0 phosphate buffer containing 0.05% sodium lauryl sulfate (SLS). The flux of LS alone was nearly same as that of LS-SDC-HPCD (1:3:6) PM. However, the flux of LS-SDC-HPCD (1:3:6) SD slightly increased compared with drug alone and PM, suggesting that entrapment of LS in micelles does not significantly hinder the permeation across cellulose membrane. In the dissolution-duodenal permeation studies using a LS-HPCD-SDC (1:3:6) SD, the addition of various bile salts in donor solutions (25 mM) enhanced the permeation of LS markedly, and the fluxes were found to be $0.69{\pm}0.41$, $0.87{\pm}0.51$, $0.84{\pm}0.46$, $0.47{\pm}0.17$ and $0.68{\pm}0.32{\mu}g/cm^2/hr$ for sodium cholate (SC), SDC, SGC, sodium taurodeoxycholate (STDC) and sodium taurocholate (STC), respectively. The stepwise increase of donor SGC concentration increased the flux dose-dependently. From the relationship of donor SGC concentration and flux, the concentration of SGC initiating the permeation across the duodenal mucosa was calculated to be 11.1 mM, which is nearly same as the critical micelle concentration (CMC, 11.6 mM) of SGC. However, with no addition of bile salts and below CMC, the permeation was very limited and irratic, indicating that LS itself is very poor permeable. Higher protions of bile salt in SD such as LS-SDC or LS-SGC (1 : 49 and 1 : 69) showed highly promoted fluxes. In conclusion, SD systems with bile salts, which may form their micelles in intestinal fluids, might be a promising means for providing enhanced dissolution and intestinal permeation of practically insoluble and non-absorbable LS.