• 제목/요약/키워드: amorphous film

Search Result 1,447, Processing Time 0.028 seconds

Thickness-dependent morphology of ZnO films and amorphous ZnO Transparent TFT

  • Hsieh, Hsing-Hung;Wu, Chung-Chih
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1677-1679
    • /
    • 2007
  • Thickness dependent morphology of ZnO films was studied, and ZnO can be intentionally grown into amorphous phase by reducing the thickness. The top-gate amorphous ZnO TTFTs with rather high field-effect mobilities and on/off current ratios were effectively fabricated.

  • PDF

Magnetic Properties of Co-Cr(-Ta)/Si Bilayered Thin Film (Co-Cr(-Ta)/Si 이층막의 자기적 특성)

  • 김용진;박원효;금민종;최형욱;김경환;손인환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.3
    • /
    • pp.281-286
    • /
    • 2002
  • In odder to investigate the magnetic properties of CoCr-based bilayered thin films on kind of underlayer, we introduced amorphous Si layer to Co-Cr(-Ta) magnetic layer as underlayer. First, we prepared CoCr and CoCrTa single layer using the Facing Targets Sputtering system to investigate theirs properties. It was revealed that with increasing the film thickness of CoCr, CoCrTa single layer, crystalline orientation and perpendicular coercivity was improved. The CoCrTa thin film showed bettor crystalline and magnetic characteristics than CoCr thin film. As a result of investigating magnetic properties of CoCr and CoCrTa magnetic layer on introducing the Si underlayer, perpendicular coercivity and saturation magnetization of CoCr/Si and CoCrTa/Si bilayered thin film were decreased due to the increased grain size and diffusion of Si atoms to magnetic layer. And they showed constant with increasing the film thickness of Si thin film. However, in case of CoCrTa/Si bilayered thin film, in-plane coercivity was controlled low at about 250Oe. The c-axis orientations of CoCr/si and CoCrTa/Si bilayered thin film showed a good crystalline characteristics as about $2^{\circ}$.

Physics-Based SPICE Model of a-InGaZnO Thin-Film Transistor Using Verilog-A

  • Jeon, Yong-Woo;Hur, In-Seok;Kim, Yong-Sik;Bae, Min-Kyung;Jung, Hyun-Kwang;Kong, Dong-Sik;Kim, Woo-Joon;Kim, Jae-Hyeong;Jang, Jae-Man;Kim, Dong-Myong;Kim, Dae-Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.3
    • /
    • pp.153-161
    • /
    • 2011
  • In this work, we report the physics-based SPICE model of amorphous oxide semiconductor (AOS) thin-film transistors (TFTs) and demonstrate the SPICE simulation of amorphous InGaZnO (a-IGZO) TFT inverter by using Verilog-A. As key physical parameter, subgap density-of-states (DOS) is extracted and used for calculating the electric potential, carrier density, and mobility along the depth direction of active thin-film. It is confirmed that the proposed DOS-based SPICE model can successfully reproduce the voltage transfer characteristic of a-IGZO inverter as well as the measured I-V characteristics of a-IGZO TFTs within the average error of 6% at $V_{DD}$=20 V.

Effect of Deposition Temperature on the Electrical Performance of SiZnSnO Thin Film Transistors Fabricated by RF Magnetron Sputtering (스퍼터 공정을 이용한 SiZnSnO 산화물 반도체 박막 트랜지스터의 증착 온도에 따른 특성)

  • Ko, Kyung Min;Lee, Sang Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.5
    • /
    • pp.282-285
    • /
    • 2014
  • We have investigated the structural and electrical properties of Si-Zn-Sn-O (SZTO) thin films deposited by RF magnetron sputtering at various deposition temperatures from RT to $350^{\circ}C$. All the SZTO thin fims are amorphous structure. The mobility of SZTO thin film has been changed depending on the deposition temperature. SZTO thin film transistor shows mobility of 8.715 $cm^2/Vs$ at room temperature. We performed the electrical stress test by applying gate and drain voltage. SZTO thin film transistor shows good stability deposited at room temperature while showing poor stability deposited at $350^{\circ}C$. As a result, the electrical performance and stability have been changed depending on deposition temperature mainly because high deposition temperature loosened the amorphous structure generating more oxygen vacancies.

Magneto-Impedance Effect of FeCoSiB Amorphous Magnetic Films (FeCoSiB계 아몰퍼스 자성박막의 자기-임피 던스 효과)

  • Shin, Yong-Jin;Soh, Dae-Hwa;Kim, Hyen-Wook;Kim, Dae-Ju;Seo, Kang-Soo
    • Korean Journal of Materials Research
    • /
    • v.8 no.3
    • /
    • pp.252-255
    • /
    • 1998
  • In this paper, we investigate the magneto-impedance(M1) effect of the FeCoSiB amorphous magnktic films. The amorphous magnetic film having near zero magnetostriction is fabricated by using the sputtering method, and then annealed in magnetic field. When the external magnetic field is directly applied to the fabricated film, the voltage amplitude between both side of the magnetic film varies about 76.2% at 120[MHzl and the impedance varies about 2.1%/0e. Thus, we find that the fabricated magnetic film has the characteristics of good sensor element.

  • PDF

Investigation of contact resistance between metal electrodes and amorphous gallium indium zinc oxide (a-GIZO) thin-film transistors

  • Kim, Woong-Sun;Moon, Yeon-Keon;Lee, Sih;Kang, Byung-Woo;Kwon, Tae-Seok;Kim, Kyung-Taek;Park, Jong-Wan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.546-549
    • /
    • 2009
  • In this paper, we investigated the effects of different source/drain (S/D) electrode materials in thin film transistors (TFTs) based on indium-gallium-zinc oxide (IGZO) semiconductor. A transfer length and effective resistances between S/D electrodes and amorphous IGZO thin-film transistors were examined. Intrinsic TFT parameters were extracted by the transmission line method (TLM) using a series of TFTs with different channel lengths measured at a low drain voltage. The TFTs fabricated with Cu S/D electrodes showed the lowest contact resistance and transfer length indicating good ohmic characteristics, and good transfer characteristics with a field-effect mobility (${\mu}_{FE}$) of 10.0 $cm^2$/Vs.

  • PDF

Velocity Change of Magneto Surface Acoustic Wave (MSAW) in $({Fe_{1-x}}{Co_x})_{89}{Zr_{11}}$ Amorphous Films (I) ($({Fe_{1-x}}{Co_x})_{89}{Zr_{11}}$비정질 자성 막에서의 자기표면탄성파 속도변화 (I))

  • Kim, Sang-Won
    • Korean Journal of Materials Research
    • /
    • v.11 no.6
    • /
    • pp.477-482
    • /
    • 2001
  • The velocity changes of magneto surface acoustic wave (MSAW) have been investigated in the MSAW devices composed of wedge type transducer and as-sputtered ($Fe_{1-x}$ $Co_{x}$ )$_{89}$ $Zr_{ 11}$ (x=0~1.0)amorphous films on glass substrates. The velocity changes of devices depended sensistively on exciting frequency of MSAW, applying the DC bias magnetic field. film thickness and film composition. Particularly. it was conformed that velocity changes increased with the increase of the exciting frequency of MSAW and the thickness of magnetic films. A device deposited x= 0.8 film along the MSAW propagation direction among the devices exhibited a large velocity change of 0.062% at 8.7 MHz for the applied field of 70 Oe.

  • PDF

Characteristics variation of CoCrTa/Si double layer thin film on variation of underlayer substrate temperature (하지층기판온도에 따른 CoCrTa/Si 이층박막의 특성변화)

  • 박원효;김용진;금민종;가출현;손인환;최형욱;김경환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.77-80
    • /
    • 2001
  • Crystallographic and magnetic characteristics of CoCr-based magnetic thin film for perpendicular magnetic recording media were influenced on preparing conditions. In these, there is that substrate temperature was parameter that increases perpendicular coercivity of CoCrTa magnetic layer using recording layer. While preparation of CoCr-based doublelayer, by optimizing substrate temperature, we expect to increase perpendicular anisotropy of CoCr magnetic layer and prepare ferromagnetic recording layer with a good quality by epitaxial growth. CoCrTa/Si doublelayer showed a good dispersion angle of c-axis orientation $\Delta$$\theta$$_{50}$ caused by inserting amorphous Si underlayer which prepared at underlayer substrate temperature 250C. Perpendicular coercivity was constant, in-plane coercivity was controlled a low value about 2000e. This result implied that Si underlayer could restrain growth of initial layer of CoCrTa thin film, which showed bad magnetic properties effectively without participating magnetization patterns of magnetic layer. In case of CoCrTa/Si that prepared with ultra thin underlayer, crystalline orientation of CoCrTa was improved rather underlayer thickness 1nm, it was expected that amorphous Si layer played a important role in not only underlayer but also seed layer.t also seed layer.r.

  • PDF

Diffusion Currents in the Amorphous Structure of Zinc Tin Oxide and Crystallinity-Dependent Electrical Characteristics

  • Oh, Teresa
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.225-228
    • /
    • 2017
  • In this study, zinc tin oxide (ZTO) films were prepared on indium tin oxide (ITO) glasses and annealed at different temperatures under vacuum to investigate the correlation between the Ohmic/Schottky contacts, electrical properties, and bonding structures with respect to the annealing temperatures. The ZTO film annealed at $150^{\circ}C$ exhibited an amorphous structure because of the electron-hole recombination effect, and the current of the ZTO film annealed at $150^{\circ}C$ was less than that of the other films because of the potential barrier effect at the Schottky contact. The drift current as charge carriers was similar to the leakage current in a transparent thin-film device, but the diffusion current related to the Schottky barrier leads to the decrease in the leakage current. The direction of the diffusion current was opposite to that of the drift current resulting in a two-fold enhancement of the cut-off effect of leakage drift current due to the diffusion current, and improved performance of the device with the Schottky barrier. Hence, the thin film with an amorphous structure easily becomes a Schottky contact.

FERROMAGNETIC RESONANCE STUDIES IN AMORPHOUS Co-Zr FILMS

  • Kim, Y.Y.;Baek, J.S.;Lee, S.J.;Lim, W.Y.;Yu, S.C.;Lee, S.H.;Jang, P.W.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.528-532
    • /
    • 1995
  • Ferromagnetic resonance experiments have been used to investigate the magnetic properties of amorphous $Co_{89.5}Zr_{10.5}$ thin films deposited by DC magnetron sputtering method. In the thickness range from $350\;{\AA}$ to $3,200\;{\AA}$, measurements were carried out in a static magnetic field perpendicular and parallel to the film plane and in a conventional 9.44 GHz spectrometer at room temperature. The ferromagnetic resonance spectra by the field perpendicular to the film plane showed standing spin wave. The spacing and the relative intensities between the various spin wave resonance peaks are analysed considering surface magnetic anisotropy. The surface magnetic anisotropy constant ($K_{so},\;K_{sd}$) of amorphous $Co_{89.5}Zr_{10.5}$ thin films are $0.02\;erg/\textrm{cm}^2$ and $0.55\;erg/\textrm{cm}^2$ respectively regardless of the film thickness except for $3,200\;{\AA}$ film. In case of $3,200\;{\AA}$ these values are $0.46\;erg/\textrm{cm}^2$ and $0.55\;erg/\textrm{cm}^2$ respectively.

  • PDF