• Title/Summary/Keyword: ammonia nitrogen

Search Result 1,142, Processing Time 0.031 seconds

Adsorption Mechanisms of NH3 on Chlorinated Si(100)-2×1 Surface

  • Lee, Hee-Soon;Choi, Cheol-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.775-778
    • /
    • 2012
  • The potential energy surfaces of ammonia molecule adsorptions on the symmetrically chlorinated Si(100)-$2{\times}1$ surface were explored with SIMOMM:MP2/6-31G(d). It was found that the initial nucleophilic attack by ammonia nitrogen to the surface Si forms a $S_N2$ type transition state, which eventually leads to an HCl molecular desorption. The second ammonia molecule adsorption requires much less reaction barrier, which can be rationalized by the surface cooperative effect. In general, it was shown that the surface Si-Cl bonds can be easily subjected to the substitution reactions by ammonia molecules yielding symmetric surface Si-$NH_2$ bonds, which can be a good initial template for subsequent surface chemical modifications. The ammonia adsorptions are in general more facile than the corresponding water adsorption, since ammonia is better nucleophile.

Acidification and Biochar Effect on Ammonia Emission and Nitrogen Use Efficiency of Pig Slurry in the Vegetative Growth of Maize (Zea mays L.)

  • Lee, Seung Bin;Park, Sang Hyun;Lee, Bok Rye;Kim, Tae Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.1
    • /
    • pp.47-53
    • /
    • 2022
  • The objective of this study was to verify the effect of pig slurry application with acidification and biochar on feed value, nitrogen use efficiency (NUE) of maize forage, and ammonia (NH3) emission. The four treatments were applied: 1) non-pig slurry (only water as a control, C), 2) only pig slurry application (P), 3) acidified pig slurry application (AP), 4) acidified pig slurry application with biochar (APB). The pig slurry and biochar were applied at a rate of 150 kg N ha-1 and 300 kg ha-1, respectively. The AP and APB treatments enhanced all feed values compared to C and P treatments. The NUE for plant N was significantly increased 92.1% by AP and APB treatment, respectively, compared to the P treatment. On the other hand, feed values were not significantly different between AP and APB treatments. The acidification treatment with/without biochar significantly mitigated NH3 emission compared to the P treatment. The cumulative NH3 emission throughout the period of measurement decreased by 71.4% and 74.8% in the AP and APB treatments. Also, APB treatment reduced ammonia emission by 11.9% compared to AP treatment. The present study clearly showed that acidification and biochar can reduce ammonia emission from pig slurry application, and pig slurry application with acidification and biochar exhibited potential effects in feed value, NUE, and reducing N losses from pig slurry application through reduction of NH3 emission.

The investigation of adsorption properties of filter media for removal efficiency of nitrogen, phosphorus using experimental and density functional theory (실험 및 밀도범함수이론을 이용한 질소, 인 저감 효과 분석을 위한 여재의 흡착 특성 연구)

  • Kim, Taeyoon;Kwon, Yongju;Kang, Choonghyun;Kim, Jongyoung;Shin, Hyun Suk;Kwon, Soonchul;Cha, Sung Min
    • Journal of Wetlands Research
    • /
    • v.20 no.3
    • /
    • pp.263-271
    • /
    • 2018
  • In this study, we analyzed the removal efficiency of ammonia nitrogen and phosphate dependant on the column depths using various absorbents such as zeolite silica sand, and activated carbon through the column test. In addition, we analyzed electrochemical adsorption behaviors of ammonia nitrogen and phosphate through the quantum mechanical calculation based on density functional theory calculation. Experimental results represent the removal efficiency of ammonia nitrogen and phosphate are zeolite > activated carbon > silica sand, and activated carbon > zeolite > silica sand, respectively. Zeolite shows high adsorption property for ammonia nitrogen over 90%, regardless of the column depth, while activated carbon exhibits high adsorption property for both ammonia nitrogen and phosphate as the column depth for filter media increases. Theoretical findings using DFT calculation for the adsorption behaviors of adsorbents (activated carbon and silica sand) and nutrients ($PO_4{^{3-}}$, $NH_4{^{+}}$) show that activated carbon represented narrower HOMO-LUMO band gap with high adsorption energy, and even more favorable environment for electron adsorption than silica sand, which leads to the effective removal of nutrients.

Nitrite Accumulation Characteristics and Quantitative Analyses of Nitrifying and Denitrifying Bacteria in a Sequencing Batch Reactor (연속회분반응기의 아질산 축적 특성과 질산화 및 탈질 미생물의 정량적 분포 연구)

  • Kim, Dong-Jin;Kwon, Hyun-Jin;Yoon, Jung-Yee;Cha, Gi-Cheol
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.383-390
    • /
    • 2008
  • Recently, the interests on economical nitrogen removal from wastewater are growing. As a method of the novel nitrogen removal technology, nitrogen removal via nitrite pathway by selective inhibition of free ammonia and free nitrous acid on nitrite oxidizing bacteria have been intensively studied. The inhibition effects of free ammonia and free nitrous acid are low when domestic wastewater is used, however, because of its relatively lower nitrogen concentration than the wastewater from industry and landfill, etc. In this study, a sequencing batch reactor (SBR) is proposed for nitrogen removal to investigate the effect of the low nitrogen concentration on nitrite accumulation. Nitrification efficiency reached almost 100% during the aerobic cycle and the maximum specific nitrification rate ($V_{max,nit}$) reached $17.8mg\;NH_4{^+}-N/g\;MLVSS{\bullet}h$. During the anoxic cycle, average denitrification efficiency reached 87% and the maximum specific denitrification rate ($V_{max,den}$) reached $9.8mg\;NO_3{^-}-N/g\;MLVSS{\bullet}h$. From the analysis the main reason of nitrite accumulation in the SBR was free nitrous acid rather than free ammonia. Nitrite accumulation increased with the decrease of organic content in the wastewater and the mechanism is not well understood yet. From the result of fluorescent in situ hybridization, the distribution of nitrite oxidizing bacteria was in equilibrium with ammonium oxidizing bacteria when nitrite accumulation did not occur.

Assessing the Impact of Liquid Potassium Permanganate on Litter Quality of Poultry (액상 과망간산칼륨 적용시 육계 깔짚의 특성 평가)

  • Choi, In-Hag
    • Journal of Environmental Science International
    • /
    • v.29 no.1
    • /
    • pp.119-122
    • /
    • 2020
  • The effects of liquid potassium permanganate (KMnO4) on the litter quality of poultry were investigated. Two-hundred-forty 0-day-old broiler chickens (Arbor Acres) were randomly assigned to two treatments with four replicated pens of 30 chickens each. Treatment liquid KMnO4 at a rate of 50 g of liquid KMnO4/kg of poultry litter was sprayed onto the litter surface using a small hand pump; others served as a control that was applied without liquid KMnO4 additions. Compared with controls, the treatment liquid KMnO4 showed no differences in pH, total nitrogen and ammonia concentration. It was concluded that liquid KMnO4 did not significantly increase poultry litter quality. Mechanisms relating to increasing litter pH and ammonia using liquid KMnO4 are an oxidant agent (not acid-foaming agents).

Estimation of Residual Biomass, PHB, and Nutrient Concentrations by Supplied Amount of Ammonia Solution in Fermentation of Alcaligenes latus

  • Lee, Yong-Woo;Tsuneo Yamane
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.554-561
    • /
    • 1999
  • A novel estimation method was investigated for determining the concentrations of residual biomass, poly-3-hydroxybutyrate (PHB), and main nutrients including carbon and nitrogen sources, phosphate, and mineral ions from the supplied amount of ammonia solution used for a pH-control solution and nitrogen source in a PHB fermentation. The estimation equations for a batch culture and a fed-batch culture were derived from the relationship between the growth rate of residual biomass and the feed rate of the pH-control solution, and then were applied to the batch culture and the fed-batch cultures of Alcaligenes latus. This method was successfully applied to estimate the concentrations of residual biomass, PHB, and nutrients.

  • PDF

Main-stream Partial Nitritation - Anammox (PN/A) Processes for Energy-efficient Short-cut Nitrogen Removal (주공정에서 아질산화-혐기성 암모늄 산화법에 의한 단축질소제거공정 연구동향)

  • Park, Hongkeun;Rhu, Daehwan
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.96-108
    • /
    • 2018
  • Large efforts have recently been made on research and development of sustainable and energy-efficient short-cut nitrogen removal processes owing to strong attention to the energy neutral/positive wastewater treatment system. Anaerobic ammonium oxidizing bacteria (anammox bacteria) have been highlighted since 1990's due to their unique advantages including 60% less energy consumption, nearly 100% reduction for carbon source requirement, and 80% less sludge production. Side-stream short-cut nitrogen removal using anammox bacteria and partial nitritation anammox (PN/A) has been well established, whereas substantial challenges remain to be addressed mainly due to undesired main-stream conditions for anammox bacteria. These include low temperature, low concentrations of ammonia, nitrite, free ammonia, free nitrous acid or a combination of those. In addition, an anammox side-stream nitrogen management is insufficient to reduce overall energy consumption for energy-neutral or energy positive water resource recovery facility (WRRF) and at the same time to comply with nitrogen discharge regulation. This implies the development of the successful main-stream anammox based technology will accelerate a conversion of current wastewater treatment plants to sustainable water and energy recovery facility. This study discusses the status of the research, key mechanisms & interactions of the protagonists in the main-stream PN/A, and control parameters and major challenges in process development.

Improvement of the Advanced Treatment for Nitrogen Removal of Acrylic Fiber Wastewater (아크릴섬유 폐수의 생물학적 질소제거공정의 개선)

  • Lee, Chan-Won;Cho, In-Sung;Lim, Kyeong-Won
    • Journal of Environmental Science International
    • /
    • v.15 no.5
    • /
    • pp.439-446
    • /
    • 2006
  • The effluent discharge standards of industrial wastewater has become more stringent since 2003. Many industrial wastewater treatment plants has been upgraded to advanced treatment facilities. There are high concentrations of nitrate(>200 mg/L) and ammonium(>50 mg/L) nitrogen in the acrylic fiber wastewater of H textile Co. Wastewater from acrylic fiber industry containing acrylonitrile, which may affect the subsequent biological treatment process. Manufacturing of acrylic fiber also produces shock loadings. Excessive acrylonitrile and polymer debris produced in the polymerization process was screened, coagulated with CaO and settled down. A preaeration system was added to treat this high pH effluent to remove volatile organic compound and ammonia nitrogen by the air stripping effect. it was found that nitrification rate was not sufficient in the Anoxic/Oxic(AO) process. One denitrification tank was converted to nitrification reactor to extend HRT of nitrification. Nitrification rate of ammonia nitrogen was promoted from 32% to 67% by this modification and effluent nitrogen concentration was well satisfied with the effluent standards since then.

Friction and Wear of Nitrogen Incorporated Diamond-like Carbon Films Under a Vacuum

  • Yoon, Eui-Sung;Kong, Hosung;Lee, Kwang-Ryeol;Oh, Jae-Eung
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.59-65
    • /
    • 1995
  • Tribological behaviors of nitrogen incorporated amorphous diamond-like carbon films were experimentally measured under a vacuum ($3 \times 10^{-5}$ Torr) using a ball (AISI 52100 steel)-on-disk wear-rig. Nitrogen incorporated DLC films were deposited by r.f. plasma assisted chemical vapor deposition method. Mixtures of benzene and ammonia or nitrogen gases were used as the reaction gases for the r.f. PACVD, and Si (100) wafer was used as the substrate. In the tribo-test, effects of DLC film thickness and normal load in friction were measured and discussed. Results showed that friction of nitrogen incorporated DLC films from a mixture gas of benzene and ammonia was lower than that of 100% benzene, specially in the measurement of minimum coefficient of friction. Differences in frictional characteristics of nitrogen incorporated DLC films were explained with the changes in chemical structures of the films. Result also showed that friction of DLC films increased with the sliding contact cycle, which remarkably accompanied with roll-shaped wear debris. Mechanisms and roles of the polymer-like wear debris were presented and discussed.

Effects of nitrogen gas flushing in comparison with argon on rumen fermentation characteristics in in vitro studies

  • Park, KiYeon;Lee, HongGu
    • Journal of Animal Science and Technology
    • /
    • v.62 no.1
    • /
    • pp.52-57
    • /
    • 2020
  • In rumen in vitro experiments, although nitrogen gas (N2) flushing has been widely used, its effects on rumen fermentation characteristics are not clearly determined. The present study is the first to evaluate the effects of N2 flushing on rumen fermentation characteristics in in vitro batch culture system by comparing with new applicable non-metabolizable gas: argon (Ar). The rumen fluid was taken from two Korean native heifers followed by incubation for 3, 9, 12, and 24 h with N2 or Ar flushing. As a result, in all incubation time, N2 flushing resulted in higher total gas production than Ar flushing (p < 0.01). Additionally, in N2 flushing group, ammonia nitrogen was increased (p < 0.01). However, volatile fatty acids profiles and pH were not affected by the flushing gases (p > 0.05). In conclusion, the present study demonstrated that N2 flushing can influence the rumen nitrogen metabolism via increased ammonia nitrogen concentration and Ar flushing can be used as a new alternative flushing gas.