Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.3.775

Adsorption Mechanisms of NH3 on Chlorinated Si(100)-2×1 Surface  

Lee, Hee-Soon (Department of Chemistry, College of Natural Sciences, Kyungpook National University)
Choi, Cheol-Ho (Department of Chemistry, College of Natural Sciences, Kyungpook National University)
Publication Information
Abstract
The potential energy surfaces of ammonia molecule adsorptions on the symmetrically chlorinated Si(100)-$2{\times}1$ surface were explored with SIMOMM:MP2/6-31G(d). It was found that the initial nucleophilic attack by ammonia nitrogen to the surface Si forms a $S_N2$ type transition state, which eventually leads to an HCl molecular desorption. The second ammonia molecule adsorption requires much less reaction barrier, which can be rationalized by the surface cooperative effect. In general, it was shown that the surface Si-Cl bonds can be easily subjected to the substitution reactions by ammonia molecules yielding symmetric surface Si-$NH_2$ bonds, which can be a good initial template for subsequent surface chemical modifications. The ammonia adsorptions are in general more facile than the corresponding water adsorption, since ammonia is better nucleophile.
Keywords
SIMOMM; Mechanism; Ammonia; Silicon surface; Ab initio;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Allinger, N. L.; Yuh, Y. H.; Lii, J. H. J. Amer. Chem. Soc. 1989, 111, 8551.   DOI
2 Choi, C. H.; Gordon, M. S. Theoretical Studies of Silicon Surface Reactions with Main Group Adsorbates; Curtiss, L. A., Gordon, M. S., Eds., Kluwer Academic Publishers: Ch. 4, 2004; 125-190.
3 Avouris, P.; Wolkow, R. Phys. Rev. B 1989, 39, 5091.   DOI
4 Queeney, K. T.; Chabal, Y. J.; Raghavachari, K. Phys. Rev. Lett. 2001, 86, 1046.   DOI
5 Cao, X.; Hamers, R. J. J. Am. Chem. Soc. 2001, 123, 10988   DOI
6 Mui, C.; Wang, G. T.; Bent, S. F.; Musgrave, C. B. J. Chem. Phys. 2001, 114, 10170.   DOI
7 Mui, C.; Han, J. H.; Wang, G. T.; Musgrave, C. B.; Bent, S. F. J. Am. Chem. Soc. 2002, 124, 4027.   DOI
8 Nakayama, K.; Aldao, C. M.; Weaver, J. H. Phys. Rev. Lett. 1999, 82, 568.   DOI
9 Martin-Gago, J. A.; Roman, E.; Refolio, M. C.; Rubio, J. M.; Lopez-Sancho, J.; Hellner, L.; Comtet, G. Surf. Sci. 1999, 424, 82.   DOI
10 Pi, T. W.; Tsai, S. F.; Ouyang, C. P.; Wen, J. F.; Wu, R. T. Surf. Sci. 2001, 488, 387.   DOI
11 Lee, H. S.; An, K.-S.; Kim, Y. S.; Choi, C. H. J. Phys. Chem. B 2005, 109, 10909.   DOI
12 Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257.   DOI
13 Gonzalez, C.; Schlegel, H. B. 1991, 95, 5853.   DOI
14 Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A., Jr. J. Comp. Chem. 1993, 14, 1347.   DOI   ScienceOn
15 Shoemaker, J. R.; Burgraff, L. W.; Gordon, M. S. J. Phys. Chem. A 1999, 103, 3245.   DOI
16 Cho, J.; Choi, C. H. J. Chem. Phys. 2011, 134, 194701   DOI