• Title/Summary/Keyword: ammonia nitrogen

Search Result 1,143, Processing Time 0.032 seconds

Application for Measuring the Glucose, Ammonia nitrogen, and Tylosin Concentration using Near Infrared Spectroscopy

  • Kim, Jong-Soo;Cho, Hoon
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.2
    • /
    • pp.19-25
    • /
    • 2008
  • For measurement of tylosin, ammonia nitrogen, and glucose concentration during the culture of Streptomyces fradiae using Near Infrared Spectroscopy, the calibration using various mathematical models was performed and then, based on the linear model, the validation was carried out. In the case of sucrose concentration using the MLR method, the Standard Error of Prediction and Multiple correlation coefficient were 1.97, and 0.991, respectively. In the case of ammonia nitrogen concentration using the PLSR method, the Standard Error of Prediction and Multiple correlation coefficient were 0.13, and 0.990, respectively. In the case of tylosin concentration using the PLSR method, the standard Error of Prediction and Multiple correlation coefficient were 0.54, and 0.984, respectively.

Graphene Doping by Ammonia Plasma Surface Treatment (암모니아 플라즈마 표면처리를 통한 그래핀의 질소도핑)

  • Lee, Byeong-Joo;Jeong, Goo-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.4
    • /
    • pp.163-168
    • /
    • 2015
  • Graphene has attracted much attention due to its remarkable physical properties and potential applications in many fields. In special, the electronic properties of graphene are influenced by the number of layer, stacking sequence, edge state, and doping of foreign elements. Recently, many efforts have been dedicated to alter the electronic properties by doping of various species, such as hydrogen, oxygen, nitrogen, ammonia and etc. Here, we report our recent results of plasma doping on graphene. We prepared mechanically exfoliated graphene, and performed the plasma treatment using ammonia gas for nitrogen doping. The direct-current plasma system was used for plasma ignition. The doping level was estimated from the number of peak shift of G-band in Raman spectra. The upshift of G-band was observed after ammonia plasma treatment, which implies electron doping to graphene.

Hybrid MBE Growth of Crack-Free GaN Layers on Si (110) Substrates

  • Park, Cheol-Hyeon;O, Jae-Eung;No, Yeong-Gyun;Lee, Sang-Tae;Kim, Mun-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.183-184
    • /
    • 2013
  • Two main MBE growth techniques have been used: plasma-assisted MBE (PA-MBE), which utilizes a rf plasma to supply active nitrogen, and ammonia MBE, in which nitrogen is supplied by pyrolysis of NH3 on the sample surface during growth. PA-MBE is typically performed under metal-rich growth conditions, which results in the formation of gallium droplets on the sample surface and a narrow range of conditions for optimal growth. In contrast, high-quality GaN films can be grown by ammonia MBE under an excess nitrogen flux, which in principle should result in improved device uniformity due to the elimination of droplets and wider range of stable growth conditions. A drawback of ammonia MBE, on the other hand, is a serious memory effect of NH3 condensed on the cryo-panels and the vicinity of heaters, which ruins the control of critical growth stages, i.e. the native oxide desorption and the surface reconstruction, and the accurate control of V/III ratio, especially in the initial stage of seed layer growth. In this paper, we demonstrate that the reliable and reproducible growth of GaN on Si (110) substrates is successfully achieved by combining two MBE growth technologies using rf plasma and ammonia and setting a proper growth protocol. Samples were grown in a MBE system equipped with both a nitrogen rf plasma source (SVT) and an ammonia source. The ammonia gas purity was >99.9999% and further purified by using a getter filter. The custom-made injector designed to focus the ammonia flux onto the substrate was used for the gas delivery, while aluminum and gallium were provided via conventional effusion cells. The growth sequence to minimize the residual ammonia and subsequent memory effects is the following: (1) Native oxides are desorbed at $750^{\circ}C$ (Fig. (a) for [$1^-10$] and [001] azimuth) (2) 40 nm thick AlN is first grown using nitrogen rf plasma source at $900^{\circ}C$ nder the optimized condition to maintain the layer by layer growth of AlN buffer layer and slightly Al-rich condition. (Fig. (b)) (3) After switching to ammonia source, GaN growth is initiated with different V/III ratio and temperature conditions. A streaky RHEED pattern with an appearance of a weak ($2{\times}2$) reconstruction characteristic of Ga-polarity is observed all along the growth of subsequent GaN layer under optimized conditions. (Fig. (c)) The structural properties as well as dislocation densities as a function of growth conditions have been investigated using symmetrical and asymmetrical x-ray rocking curves. The electrical characteristics as a function of buffer and GaN layer growth conditions as well as the growth sequence will be also discussed. Figure: (a) RHEED pattern after oxide desorption (b) after 40 nm thick AlN growth using nitrogen rf plasma source and (c) after 600 nm thick GaN growth using ammonia source for (upper) [110] and (lower) [001] azimuth.

  • PDF

Understanding the Effects of Deep Fertilization on Upland Crop Cultivation and Ammonia Emissions using a Newly Developed Deep Fertilization Device (신개발 심층시비장치를 이용한 심층시비의 밭작물 재배 효과)

  • Sung-Chang Hong;Min-Wook Kim;Jin-Ho Kim;Seong-Jik Park
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.28-34
    • /
    • 2023
  • Nitrogen fertilizers applied to agricultural lands for crop cultivation can be volatilized as ammonia. The released ammonia can catalyze the formation of ultrafine dust (particulate matter, PM2.5), classified as a short-lived climate change pollutant, in the atmosphere. Currently, one of the prominent methods for fertilizer application in agricultural lands is soil surface application, which comprises spraying the fertilizers onto the soil surface, followed by mixing the fertilizers with the soil. Owing to the low nitrogen absorption rate of crops, when nitrogen fertilizers are applied in this manner, they can be lost from land surfaces through volatilization. Therefore, investigating a new fertilization method to reduce ammonia emissions and increase the fertilizer utilization efficiency of crops is necessary. In this study, to develop a method for reducing ammonia emissions from nitrogen fertilizers applied to soil surfaces, deep fertilization was conducted using a newly developed deep fertilization device, and ammonia emissions from barley, garlic, and onion fields were examined. Conventional fertilization (surface application) and deep fertilization (soil depth of 25 cm) were conducted for analysis. The fertilization rate was 100% of the standard fertilization rate used for barley, and deep fertilization of N, P, and K fertilizers was implemented. Ammonia emissions were collected using a wind tunnel chamber, and quantified subsequently susing the indole-phenol blue method. Ammonia emissions released from the basal fertilizer application persisted for approximately 58 d, beginning from approximately 3 d after fertilization in conventional treatments; however, ammonia was not released from deep fertilization. Moreover, barley, garlic, and onion yields were higher in the deep fertilization treatment than in the conventional fertilization treatment. In conclusion, a new fertilization method was identified as an alternative to the current approach of spraying fertilizers on the soil surface. This new method, which involves injecting nitrogen fertilizers at a soil depth of 25 cm, has the potential to reduce ammonia emissions and increase the yields of barley, garlic, and onion.

SOME FACTORS INFLUENCING TRI-L-ALANINE DISAPPEARANCE AND RUMEN BACTERIAL GROWTH YIELD IN VITRO

  • Ha, J.K.;Kennelly, J.J.;Lee, S.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.4 no.4
    • /
    • pp.369-375
    • /
    • 1991
  • A series of in vitro incubation studies with washed rumen bacteria were conducted to determine the influence of incubation time and concentrations of peptides, alanine, ammonia nitrogen and carbohydrate on the rate of peptide disappearance and on bacterial growth. Disappearance rate of tri-alanine (ala3) under various conditions was between 30.6 and $58.2mg\;hr^-$ per gram bacterial dry matter. Ala3 was removed from the incubation medium in an almost linear fashion as incubation time and ala3 concentration was increased. Washed rumen bacteria utilized ala3 faster than di-l-alanine (ala2) at all concentrations. Adding 9mM carbohydrate significantly increased ala3 disappearance, but level of ammonia nitrogen had no influence on ala3 disappearance. The presence of alanine in the medium significantly lowered ala3 utilization by rumen bacteria. Bacterial dry matter and nitrogen growth yield were not influenced by alanine and peptides when incubation medium already contained a sufficient level of ammonia nitrogen. Increased ammonia nitrogen in the presence of ala3 did not stimulate bacterial growth. Carbohydrate significantly increased bacterial dry matter and nitrogen growth as expected. Results indicate that the rate of peptide utilization by rumen bacteria may be altered by type and concentration of peptides, and energy supply, and this may be mediated through changes in numbers and type of bacteria.

Synthesis and Photodecomposition of N-Doped $TiO_2$ Surface Treated by Ammonia (암모니아 표면처리 된 질소 도핑 $TiO_2$ 광촉매의 합성 및 광분해반응)

  • Kim, Yesol;Bai, Byong Chol;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.308-312
    • /
    • 2012
  • Nitrogen doped $TiO_2$ photocatalysts were prepared by ammonia for exploring the visible light photocatalytic activity. To explore the visible light photocatalytic activity of the nitrogen doped $TiO_2$ photocatalyst, the removal of methylene blue dye was investigated under the sunlight. SEM images showed that the flocculated particle sizes of N-doped $TiO_2$ decreased due to the reaction with ammonia. XRD patterns demonstrated that the samples calcined at temperatures up to $600^{\circ}C$ and doped with nitrogen using ammonia clearly showed rutile as well as anatase peaks. The XPS results showed that the nitrogen composition onto $TiO_2$ increased according to the reaction time with ammonia. Photocatalytic activity of the nitrogen doped $TiO_2$ was better than that of undoped $TiO_2$. Nitrogen doping onto the $TiO_2$ also affected the crystal type of $TiO_2$ photocatalyst.

Removal of Low Concentration Ammonia Nitrogen using a Packed Bed Bioreactor Immobilized with Nitrifier Consortium (질화세균을 고정화한 충전층 생물반응기에서 저농도 암모니아성 질소 제거)

  • Lee, Chang-Keun;Kim, Byong-Jin;Lee, Min-Su;Kim, Yong-Ha;Suh, Kuen-Hack
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.16-21
    • /
    • 2007
  • This study estimated the effect of hydraulic residence time(HRT), influent total ammonia nitrogen(TAN) concentration, temperature and pH in the packed-bed bioreactor using immobilized nitrifiers. Removal rate of ammonia nitrogen was increased with decreasing HRT and the optimum HRT was 0.2 hour when influent TAN was $2g/m^3$. At this point, removal rate was $226.1\;g/m^3{\cdot}day$ and removal efficiency was 88.8%. Removal rate of ammonia nitrogen was Increased with increasing TAN concentration. Removal rate and efficiency of ammonia nitrogen were kept constant at $20{\sim}35^{\circ}C$ and pH $8{\sim}9$ value.

  • PDF

Microbial Activity of Ammonia Oxidizing Bacteria and Ammonia Oxidizing Archaea in the Rice Paddy Soil in Wang-gung Area of Iksan, Korea (익산 왕궁지역 논 토양에서의 질산화 세균과 질산화 고세균의 미생물학적 작용)

  • Kim, Hyun-su
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.4
    • /
    • pp.50-59
    • /
    • 2016
  • Spatial and temporal changes in nitrification activities and distribution of microbial population of ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) in paddy soils were investigated. Soil samples were collected in March and October 2015 from rice paddy with and without the presence of confined animal feeding operations. Incubation experiments and quantitative polymerase chain reaction showed that AOA's contribution to nitrification kinetics was much higher in locations where organic nitrogen in animal waste is expected to significantly contribute to overall nitrogen budget, and temporal variations in nitrification kinetics were much smaller for AOA than AOB. These differences were interpreted to indicate that different microbial responses of two microbial populations to the types and concentrations of nitrogen substrates were the main determining factors of nitrification processes in the paddy soils. The copy numbers of ammonium monooxygenase gene showed that AOA colonized the paddy soils in higher numbers than AOB with stable distribution while AOB showed variation especially in March. Although small in numbers, AOB population turned out to exert more influence on nitrification potential than AOA, which was attributed to higher fluctuation in AOB cell numbers and nitrification reaction rate per cells.

Removal of Ammonia-Nitrogen Contained in Landfill Leachate by Ammonia Stripping(I) (암모니아 탈기공정을 이용한 침출수의 암모니아성 질소제거(I))

  • Lee, Byung-Jin;Cho, Soon-Haing
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1893-1904
    • /
    • 2000
  • Nitrogen compounds are one of the major pollutants which cause eutrophication problems of the river or lake and red tides problems of the ocean. Currently available technologies for the removal of nitrogen compounds are mostly biological treatment. However, biological treatment is only effective for the wastewater which contains low concentration of nitrogen compounds. Leachate from solid waste landfill or industrial wastewater which contains high concentration of nitrogen can not be effectively treated by most of the currently available biological treatment technologies. With this connection. the objective of this study is to examine the applicability of ammonia stripping technology for the removal of high concentration of ammonia nitrogen compounds of the leachate from solid waste landfill. It can be concluded that ammonia stripping technology which was placed before the biological treatment process was very effective for the removal of high concentration of ammonium compounds. The chemical cost for the ammonia stripping was 16 percent higher than MLE process, so other methods like sludge recycling are needed for the reduction of operation cost. Further details are discussed in this paper.

  • PDF

Studies on the Variation of Nonprotein Nitrogen Compounds in the Blood of Rabbits Administered with Panax ginseng -Mainly on the Variation of Ammonia Value in the Blood of Portal Vein- (인삼투여가토(人蔘投與家兎)의 혈액내(血液內) 비단백성질소함량(非蛋白性窒素含量)의 변화(變化)에 관한 연구(硏究) -문맥(門脈) 혈액(血液) 암모니아치(値)의 변화(變化)를 중심(中心)으로-)

  • Lee, Ju Mook
    • Korean Journal of Veterinary Research
    • /
    • v.18 no.2
    • /
    • pp.77-86
    • /
    • 1978
  • The present study was carried out to evaluate the effect of Panax ginseng on the metabolism of nonprotein nitrogen compounds in rabbit blood. After rabbits were administered with ginseng powder orally for 30 days or with ginseng extract intraperitoneally for 10 days, the blood was collected from portal and ear vein to measure ammonia, urea, creatinine and nonprotein nitrogen. The blood ammonia level in ear vein of control rabbits was $87.0{\pm}5.1{\mu}g/100ml$ and was not significantly different from that of rabbits which were administered with ginseng powder orally or with ginseng extract intraperitoneally. But oral administration of ginseng powder produced a great decrease in ammonia level of portal vein from 1,392 to $704{\mu}g$ per 100ml, suggesting that intestinal ammonia production is suppressed by ginseng powder due to its antimicrobial activity. While there was no significant difference between the control and the rabbits which were administered with ginseng extract intraperitoneally. Ginseng administration had no effect on the creatinine level in blood from ear and portal vein, except the intraperitoneal injection of ginseng extract. It slightly lowered the creatinine level only in ear vein blood. The values of urea and nonprotein nitrogen were net affected by the administration of ginseng.

  • PDF