Browse > Article

Synthesis and Photodecomposition of N-Doped $TiO_2$ Surface Treated by Ammonia  

Kim, Yesol (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University)
Bai, Byong Chol (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University)
Lee, Young-Seak (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.23, no.3, 2012 , pp. 308-312 More about this Journal
Abstract
Nitrogen doped $TiO_2$ photocatalysts were prepared by ammonia for exploring the visible light photocatalytic activity. To explore the visible light photocatalytic activity of the nitrogen doped $TiO_2$ photocatalyst, the removal of methylene blue dye was investigated under the sunlight. SEM images showed that the flocculated particle sizes of N-doped $TiO_2$ decreased due to the reaction with ammonia. XRD patterns demonstrated that the samples calcined at temperatures up to $600^{\circ}C$ and doped with nitrogen using ammonia clearly showed rutile as well as anatase peaks. The XPS results showed that the nitrogen composition onto $TiO_2$ increased according to the reaction time with ammonia. Photocatalytic activity of the nitrogen doped $TiO_2$ was better than that of undoped $TiO_2$. Nitrogen doping onto the $TiO_2$ also affected the crystal type of $TiO_2$ photocatalyst.
Keywords
titania; N-doping; photocatalysts; solar light; ammonia;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. T. Jung, J. O. Kim, W. Y. Choi, and J. W. Lee, K. Geo-Environ. Con., 287 (2008).
2 W. Y. Jung, S. H. Lee, and S. S. Hong, J. Environ. Sci., 20, 511 (2011).
3 S. W. Park, S. K. Nam, and J. E. Heo, J. Environ. Sci., 16, 683 (2007).
4 D. Mitoraj and H. Kisch, Angew. Chem. Int. Ed., 47, 9975 (2008)   DOI   ScienceOn
5 M. H. Lee, M. S. Kim, J. S. Jurng, S. M. Chin, E. S. Park, and G. W. Lee, J. Environ. Sci., 19, 577 (2010).
6 S. O. Choi, J. H. Cho, S. H. Lim, and E. Y. Chung, Kor. J. Met. Mater., 49, 367 (2011)
7 M. H. Baek, S. A. Choi, and D. S. Kim, J. K. Soc. W. Q., 26, 707 (2010).
8 Y. Wang, C. Feng, Z. Jin, J. Zhang, J. J. Yang, and S. L. Zhang, J. Molecu. Catal. A-Chem., 260, 1 (2006).   DOI   ScienceOn
9 B. C. Bai, J. S. Im, J. G. Kim, and Y. S. Lee, Appl. Chem. Eng., 21, 29 (2010).
10 J. Yang, H. Bai, X. Tan, and J. Lian, Applied Surface Science, 253, 1988 (2006).   DOI   ScienceOn
11 S. U. M. Khan, M. Al-Shahry, and W. B. Ingler Jr., Science, 297, 2243 (2002).   DOI   ScienceOn
12 T. K. Yun and J. Y. Bae, J. Kor. Soc. Environ. Eng., 31, 1019 (2009).
13 S. M. Yun, J. H. Kim, E. G. Jeong, J. S. Im, and Y. S. Lee, Appl. Chem, Eng., 22, 21 (2011).
14 S. R. Lim, T. D. N. Phan, and E. W. Shin, Appl. Chem, Eng., 22, 61 (2011).
15 L. Hu, T. Yoko, H. Kozuka, and S. Sakka, T. S. Film., 219, 18 (1992).   DOI   ScienceOn
16 S. Bakardijieva, J. Subrt, V. Stengl, M. J. Dianez, and M. J. Sayagues, Appl. Catal. B-Environ., 58, 193 (2005).   DOI   ScienceOn
17 Y. Liao, W. Que, Z. Tang, W. Wang, and W. Zhao, J. Alloy. Compd., 509, 1054 (2011).   DOI   ScienceOn
18 X. Liu, Z. Liu, J. Zheng, X. Yan, D. D. Li, S. Chen, and W. Chu, J. Alloy. Compd., 509, 9970 (2011).   DOI   ScienceOn
19 X. B. Chen and C. Burda, J. Phys. Chem. B, 108, 15446 (2004).   DOI   ScienceOn
20 C. Chen, H. Bai, S. Chang, C. Chang, and W. Den, J. Nanopart. Res., 9, 365 (2006).
21 X. Cheng, X. Yua, Z. Xing, and J. Wan, Ener. Pro., 16, 598 (2012).   DOI   ScienceOn
22 S. Livraghi, M. C. Paganini, E. Giamello, A. Selloni, C. D. Valentin, and G. Pacchioni, J. Am. Chem. Soc., 128, 15666 (2006).   DOI   ScienceOn
23 S. M. Kim, T. K. Yun, and D. I. Hing, J. K. Chem. Soc., 49, 567 (2005).