• Title/Summary/Keyword: amino acids

Search Result 5,448, Processing Time 0.042 seconds

Discrimination of African Yams Containing High Functional Compounds Using FT-IR Fingerprinting Combined by Multivariate Analysis and Quantitative Prediction of Functional Compounds by PLS Regression Modeling (FT-IR 스펙트럼 데이터의 다변량 통계분석을 이용한 고기능성 아프리칸 얌 식별 및 기능성 성분 함량 예측 모델링)

  • Song, Seung Yeob;Jie, Eun Yee;Ahn, Myung Suk;Kim, Dong Jin;Kim, In Jung;Kim, Suk Weon
    • Horticultural Science & Technology
    • /
    • v.32 no.1
    • /
    • pp.105-114
    • /
    • 2014
  • We established a high throughput screening system of African yam tuber lines which contain high contents of total carotenoids, flavonoids, and phenolic compounds using ultraviolet-visible (UV-VIS) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate analysis. The total carotenoids contents from 62 African yam tubers varied from 0.01 to $0.91{\mu}g{\cdot}g^{-1}$ dry weight (wt). The total flavonoids and phenolic compounds also varied from 12.9 to $229{\mu}g{\cdot}g^{-1}$ and from 0.29 to $5.2mg{\cdot}g^{-1}$dry wt. FT-IR spectra confirmed typical spectral differences between the frequency regions of 1,700-1,500, 1,500-1,300 and $1,100-950cm^{-1}$, respectively. These spectral regions were reflecting the quantitative and qualitative variations of amide I, II from amino acids and proteins ($1,700-1,500cm^{-1}$), phosphodiester groups from nucleic acid and phospholipid ($1,500-1,300cm^{-1}$) and carbohydrate compounds ($1,100-950cm^{-1}$). Principal component analysis (PCA) and subsequent partial least square-discriminant analysis (PLS-DA) were able to discriminate the 62 African yam tuber lines into three separate clusters corresponding to their taxonomic relationship. The quantitative prediction modeling of total carotenoids, flavonoids, and phenolic compounds from African yam tuber lines were established using partial least square regression algorithm from FT-IR spectra. The regression coefficients ($R^2$) between predicted values and estimated values of total carotenoids, flavonoids and phenolic compounds were 0.83, 0.86, and 0.72, respectively. These results showed that quantitative predictions of total carotenoids, flavonoids, and phenolic compounds were possible from FT-IR spectra of African yam tuber lines with higher accuracy. Therefore we suggested that quantitative prediction system established in this study could be applied as a rapid selection tool for high yielding African yam lines.

Expression of Epidermal Growth Factor Receptor in the Inflamed Gingival Epithelium and the Dental Follicle (염증성 치은 상피와 치낭의 표피성장인자 수용체의 발현 및 실험적 치아이동에 미치는 영향에 관한 연구)

  • Kim, Young Ho;Bae, Chang
    • The korean journal of orthodontics
    • /
    • v.27 no.2
    • /
    • pp.349-357
    • /
    • 1997
  • Epidermal growth factor(EGF), a single chain polypeptide of 53 amino acids with a molecular weight of 6,045 Da, was first isolated from the male mouse submandibular glands. EGF stimulates cellular proliferation and differentiation in several tissues and accelerates the rate of wound healing. EGF is bound to the specific receptor(EGFR) on the cell membrane of its target cell. EGFR is a transmembrane glycoprotein with a molecular weight of 170,000 Da and is detectable on a large variety of cell types and tissues. The authors investigated the expression of EGFR in the normal and inflamed human gingival epithelium to study the role of EGFR in the inflammation of the gingival epithelium, and the expression of EGFR in the dental follicle by using in situ mRNA hybridization and immunohistochenistry. The results weree as follows : 1. The expression of EGFR mRNA in the normal gingival epithelium on in situ mRNA hybridization was mainly localized on the basal cell layer, and the spinous layer was weakly positive The granular and cornified layers were negative 2. The expression of EGFR protein in the normal gingival epithelium on inmunohistochemistry was localized on the cornified and granular layers, and the spinous layer was weakly positive. The basal cell layer was completely negative 3. The expression of EGFR mRNA in the inflamed gingival epithelium on in situ mRNA hybridization was evenly and homogeneously distributed in the whole layers of the gingival epithelium except the cornified layer. The staining intensity appeared to increase progressively from the basal cell layer to the cornified layer. 4. The expression of EGFR protein in the inflamed gingival epithelium on immunohistochemistry was evenly and homogeneously distributed in the whole layers of the gingival epithelium. The staining intensity appeared to increase progressively from the cornified layer to the basal cell layer. 5. Strong positive reaction was seen in the epithelial cell rests of Malassez, whereas only background staining was seen in other cells of the dental follicle. In conclusion, the up-regulation of EGFR in the inflamed gingival epithelium and the high amounts of EGFR in the epthelial cell rests of Malassez in the dental follicle can be regarded as responses to the possible damages to the oral environment to maintain the homeostatic conditions.

  • PDF

Variations of Properties and Microbial Community during Fermentation of Makgeollies by Isolated Yeasts from Traditional Makgeollies (전통막걸리에서 분리한 효모균주를 이용한 막걸리 발효과정 중의 물성 및 미생물 군집의 변화)

  • Jeon, Myong Je;Jang, Min Kyung;Lee, Sol Jee;Park, Sung Hwan;Kim, Mihyang;Sohn, Jae Hak;Lee, Han-Seung;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.23 no.6
    • /
    • pp.796-803
    • /
    • 2013
  • Property changes and bacterial characterizations by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) were investigated during the fermentation of Makgeollies by 5 isolated yeast strains. Changes of pH were large between day 0 (pH 6) and day 2 (pH 3) and showed less variation after then. ANOVA analyses revealed that pHs were statistically different with fermentation times (p<0.001), while strains (p=0.60) did not. Acidities were changed from 0.19 to 1.04% and showed rather high increase from day 2, and fermentation times (p<0.001) and strains (p=0.006) represented statistical differences. All strains showed less than 0.150% at amino-type nitrogen contents except S strain showed 0.442% at day 8, and there were no statistical differences with fermentation times (p=0.4558) and strains (p=0.3513). Saccharinities of C strain were higher from day 4, and fermentation times (p<0.0001) and strains (p=0.007) showed statistical differences. Large variation of alcohol concentrations (%) were observed between day 0 (0%) and day 2 (10%) and showed less variation after day 2, and there was no statistical difference with strains. Dominant prokaryotes were Lactobacillus fermentum and Pediococcus pentosaceus, which producing acids and functional materials. Dominant eukaryote was Saccharomyces cerevisiae, which might be resulted from addition of yeasts.

Evolutionary Explanation for Beauveria bassiana Being a Potent Biological Control Agent Against Agricultural Pests

  • Han, Jae-Gu
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.05a
    • /
    • pp.27-28
    • /
    • 2014
  • Beauveria bassiana (Cordycipitaceae, Hypocreales, Ascomycota) is an anamorphic fungus having a potential to be used as a biological control agent because it parasitizes a wide range of arthropod hosts including termites, aphids, beetles and many other insects. A number of bioactive secondary metabolites (SMs) have been isolated from B. bassiana and functionally verified. Among them, beauvericin and bassianolide are cyclic depsipeptides with antibiotic and insecticidal effects belonging to the enniatin family. Non-ribosomal peptide synthetases (NRPSs) play a crucial role in the synthesis of these secondary metabolites. NRPSs are modularly organized multienzyme complexes in which each module is responsible for the elongation of proteinogenic and non-protein amino acids, as well as carboxyl and hydroxyacids. A minimum of three domains are necessary for one NRPS elongation module: an adenylation (A) domain for substrate recognition and activation; a tholation (T) domain that tethers the growing peptide chain and the incoming aminoacyl unit; and a condensation (C) domain to catalyze peptide bond formation. Some of the optional domains include epimerization (E), heterocyclization (Cy) and oxidation (Ox) domains, which may modify the enzyme-bound precursors or intermediates. In the present study, we analyzed genomes of B. bassiana and its allied species in Hypocreales to verify the distribution of NRPS-encoding genes involving biosynthesis of beauvericin and bassianolide, and to unveil the evolutionary processes of the gene clusters. Initially, we retrieved completely or partially assembled genomic sequences of fungal species belonging to Hypocreales from public databases. SM biosynthesizing genes were predicted from the selected genomes using antiSMASH program. Adenylation (A) domains were extracted from the predicted NRPS, NRPS-like and NRPS-PKS hybrid genes, and used them to construct a phylogenetic tree. Based on the preliminary results of SM biosynthetic gene prediction in B. bassiana, we analyzed the conserved gene orders of beauvericin and bassianolide biosynthetic gene clusters among the hypocrealean fungi. Reciprocal best blast hit (RBH) approach was performed to identify the regions orthologous to the biosynthetic gene cluster in the selected fungal genomes. A clear recombination pattern was recognized in the inferred A-domain tree in which A-domains in the 1st and 2nd modules of beauvericin and bassianolide synthetases were grouped in CYCLO and EAS clades, respectively, suggesting that two modules of each synthetase have evolved independently. In addition, inferred topologies were congruent with the species phylogeny of Cordycipitaceae, indicating that the gene fusion event have occurred before the species divergence. Beauvericin and bassianolide synthetases turned out to possess identical domain organization as C-A-T-C-A-NM-T-T-C. We also predicted precursors of beauvericin and bassianolide synthetases based on the extracted signature residues in A-domain core motifs. The result showed that the A-domains in the 1st module of both synthetases select D-2-hydroxyisovalerate (D-Hiv), while A-domains in the 2nd modules specifically activate L-phenylalanine (Phe) in beauvericin synthetase and leucine (Leu) in bassianolide synthetase. antiSMASH ver. 2.0 predicted 15 genes in the beauvericin biosynthetic gene cluster of the B. bassiana genome dispersed across a total length of approximately 50kb. The beauvericin biosynthetic gene cluster contains beauvericin synthetase as well as kivr gene encoding NADPH-dependent ketoisovalerate reductase which is necessary to convert 2-ketoisovalarate to D-Hiv and a gene encoding a putative Gal4-like transcriptional regulator. Our syntenic comparison showed that species in Cordycipitaceae have almost conserved beauvericin biosynthetic gene cluster although the gene order and direction were sometimes variable. It is intriguing that there is no region orthologous to beauvericin synthetase gene in Cordyceps militaris genome. It is likely that beauvericin synthetase was present in common ancestor of Cordycipitaceae but selective gene loss has occurred in several species including C. militaris. Putative bassianolide biosynthetic gene cluster consisted of 16 genes including bassianolide synthetase, cytochrome P450 monooxygenase, and putative Gal4-like transcriptional regulator genes. Our synteny analysis found that only B. bassiana possessed a bassianolide synthetase gene among the studied fungi. This result is consistent with the groupings in A-domain tree in which bassianolide synthetase gene found in B. bassiana was not grouped with NRPS genes predicted in other species. We hypothesized that bassianolide biosynthesizing cluster genes in B. bassiana are possibly acquired by horizontal gene transfer (HGT) from distantly related fungi. The present study showed that B. bassiana is the only species capable of producing both beauvericin and bassianolide. This property led to B. bassiana infect multiple hosts and to be a potential biological control agent against agricultural pests.

  • PDF

Physicochemical Quality Characteristics of Traditional Kamju Using Extruded Rice Collet Powder (압출 쌀 콜렛 분말을 사용한 전통 감주의 제조 및 이화학적 품질 특성)

  • Je, Hae-Soo;Kang, Kyung-Hun;Park, Si-Young;Choi, Byeong-Dae;Kang, Young-Mi;Kim, Jeong-Gyun
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.147-152
    • /
    • 2016
  • This study was conducted to investigate the physicochemical quality properties and provide basic data for the activation of traditional Kamju of juice type product prepared by mixing malt and extruded rice collet powder. Malt extracts were prepared by extracting the mixture of malt and water at a weight ratio of 25:75 after soaking for 2 h at $45^{\circ}C$. Rice collet powder was prepared by adjusting the barrel temperature to $95^{\circ}C$, screw speed to $3.07{\times}g$, discharge port diameter to 7 mm and a raw material input to 50 kg/h, the powder was then ground to a particle size of 80 mesh. The physicochemical characteristics (pH, color, viscosity, reducing sugars, number of viable cells, free amino acids) and sensory evaluations were conducted at various time points during the saccharification and at different mixing ratios of the extruded rice collet powder to malt extract (5:95, 15:85, 25:75, 35:65, each at $55^{\circ}C$ for 9 h). As a result, with an increase in the proportion of the extruded rice collet powder and saccharification time, the physicochemical properties of traditional Kamju significantly improved (p<0.05). A mixing ratio of 35:65 rice collet powder to malt extract and a saccharification time of 9 h were found to be the most desirable conditions. However, based on the sensory evaluation, a mixing ratio of rice collet powder and malt extract of 25:75 and a saccharification time of 5 h resulted in the most preferable palatability of traditional Kamju (p<0.05). Therefore, the mixing ratio and saccharification time should be determined to provide a better choice with respect to the taste and economic aspects of traditional Kamju.

Inhibitory Effect of Cell Differentiation against 3T3-L1 Pre-Adipocytes and Angiotensin Converting Enzyme (ACE) Activity of Ice Plant (Mesembryanthemum crystallinum) (아이스플랜트(Mesembryanthemum crystallinum)의 3T3-L1 전지방세포 분화 및 Angiotensin-Converting Enzyme(ACE) 활성 억제)

  • Kang, Seung Mi;Kim, Seon Jeong;Nam, Sanghae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.8
    • /
    • pp.1012-1017
    • /
    • 2017
  • Mesembryanthemum crystallinum (Family: Aizoaceae) is an annual plant consisting of ice crystal-shaped bladder cells, which is responsible for its common name ice plant. This study investigated biological activities according to general components and extraction solvent in order to examine the functionality of ice plant. The total content of free amino acids was 32.57 mg/g, including 4.64 mg/g of L-alanine as the most abundant and 2.60 mg/g of ${\gamma}$-aminobutyric acid. Regarding angiotensin converting enzyme inhibitory activities of solvent fractions of ice plant, ethyl acetate fraction and chloroform fraction showed activities of $33.17{\pm}3.20{\sim}88.19{\pm}3.20%$ and $23.72{\pm}2.89{\sim}86.78{\pm}2.24%$, respectively, similar to $Captopril^{(R)}$ ($19.51{\pm}3.44{\sim}84.72{\pm}1.06%$) and $Enalapril^{(R)}$ ($24.93{\pm}1.12{\sim}91.32{\pm}3.62%$) as positive control groups. Regarding inhibition of lipid droplet production in 3T3-L1 preadipocytes by ice plant, anti-adipogenic activities were $53.00{\pm}0.45{\sim}65.75{\pm}0.31%$ and $44.16{\pm}0.29{\sim}63.32{\pm}0.36%$ in the ethyl acetate fraction and butanol fraction, respectively, showing the lowest lipid droplet production. The chloroform fraction and hexane fraction showed activities of $38.33{\pm}0.09{\sim}56.55{\pm}0.50%$ and $31.17{\pm}0.50{\sim}55.10{\pm}1.93%$, respectively, whereas the water fraction showed activity of $26.32{\pm}2.27{\sim}49.48{\pm}0.05%$. Therefore, all solvent fractions inhibited fat accumulation of 3T3-L1 preadipocytes according to treatment concentration. According to the results above, it would be possible to utilize ice plant as a new health functional material.

Characterization of Oszinc626, knock-out in zinc finger RING-H2 protein gene, in Ac/Ds mutant lines of rice(Oryza sativar L.) (Zinc finger RING-H2 protein관련 Ac/Ds전이인자 삽입 변이체 Oszinc626 유전자의 특성 분석)

  • Park, Seul-Ah;Jung, Yu-Jin;Ahn, Byung-Ohg;Yun, Doh-Won;Ji, Hyeon-So;Park, Yong-Hwan;Eun, Moo-Young;Suh, Seok-Cheol;Lee, Soon-Youl;Lee, Myung-Chul
    • Journal of Plant Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.177-183
    • /
    • 2008
  • Ac/Ds mutant lines of this study were transgenic rice plants, each of which harbored the maize transposable element Ds together with a GUS coding sequence under the control of a promoterless(Ds-GUS). We selected the mutants that were GUS expressed lines, because the GUS positive lines will be useful for identifying gene function in rice. One of these mutants was identified knock-out at Oszinc626(NP_001049991) gene, encoding a RING-H2 zinc-finger protein, by Ds insertion. In this mutant, while primary root development is normal, secondary root development from lateral root was very poor and seed development was incomplete compare with normal plant. RING zinc-finger proteins play important roles in the regulation of development in a variety of organisms. In the plant kingdom, a few genes encoding RING zinc-finger proteins have been documented with visible effects on plant growth and development. The consensus of the RING-H2(C3-H2-C3 type) domain for this group of protein is $Cys-X_2-Cys-X_{28}-Cys-X-His-X_2-His-X_2-Cys-X_{14}-Cys-X_2-Cys$. Oszinc626 encodes a predicted protein product of 445 amino acids residues with a molecular mass of 49 kDa, with a RING-zinc-finger motif located at the extreme end of the C-terminus. RT-PCR analysis indicated that the expression of Oszinc626 gene was induced by IAA, cold, dehydration, high-salinity and abscisic acid, but not by 2,4-D, and the transcription of Oszinc626 gene accumulated primarily in rice immature seeds, root meristem and shoots. The gene accumulation patterns were corresponded with GUS expression.

Study on the soluble exoression of recombinant human eoidermal growth factor using various fusion oartners in Escherichia coli (재조합 대장균에서 다양한 융합 파트너를 이용한 인간 상피세포성장인자의 발현 연구)

  • Kim, Byung-Lip;Baek, Jung-Eun;Kim, Chun-Sug;Lee, Hyeok-Weon;Ahn, Jung-Oh;Lee, Hong-Weon;Jung, Joon-Ki;Lee, Eun-Gyo;Kim, In-Ho
    • KSBB Journal
    • /
    • v.23 no.3
    • /
    • pp.205-212
    • /
    • 2008
  • The efficient soluble expression of human epidermal growth factor (hEGF) was achieved by using functional fusion partners in cytoplasm and periplasm of Escherichia coli (E. coli). hEGF was over-expressed in inactive inclusion body form in cytoplasm of E. coli due to improper disulfide bond formation and hydrophobic interaction, yielding about 5.9 mg/L in flask culture. Six functional fusion partners were introduced by linking to N-terminal part of hEGF gene for the high-level expression of soluble and active hEGF in cytoplasm and peri plasm region. Three fusion partners for cytoplasmic expression such as acidic tail of synuclein (ATS), thioredoxin (Trx) and lipase, and three fusion partners for periplasmic expression such as periplasmic cystein oxidoreductases (DsbA and DsbC) and maltose binding protein (MBP) were investigated. hEGF fused with ATS and DsbA showed over 90% of solubility in cytoplasm and periplasm, respectively. Especially DsbA was found to be an efficient fusion partner for soluble and high-level expression of hEGF, yielding about 18.1 mg/L and three-fold higher level compared to that of insoluble non-fusion hEGF in cytoplasm. Thus, heterologous proteins containing complex disulfide bond and many hydrophobic amino acids can effectively be produced as an active form in E. coli by introducing a suitable peptide or protein.

A Study of Adult's Consumption of Cooked Food with High Heat (성인의 고온가열조리식품 섭취실태 조사연구)

  • Lee, Joon-Kyoung;Yoon, Ki-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.2
    • /
    • pp.290-307
    • /
    • 2011
  • Acrolein is highly toxic and may be formed from carbohydrates, vegetable oils, animal fats and amino acids during heating of food. In the present study, we investigated adults' intake level of cooked meat using high temperature cooking method such as pan frying or grilling directly over an open flame and indirect fire using pan. The 925 adults (438 men and 487 women) participated in this nationwide survey. According to the result of frequency intake of cooked meat at high temperature, the most frequently consumed cooked meat at high temperature was fried chicken, followed by indirect cooking-samgeybsal and directly grilled fish and mackerel pike among twenty five kinds of cooked meats and foods, which were eaten more than three times per month. The woman consumed direct grilled fish and mackerel pike more than three times per month, while the man consumed samgeybsal, pork cutlet, and fried chicken once per week. The order of total intake amount of cooked meat per adult for a year is 10.3 kg of fried chicken (man 13.1 kg, woman 8.04 kg), 6.7 kg of samgeybsal (man 9.4 kg, woman 4.7 kg) and 5.1 kg of jeyukbockeum (man 7.0 kg, woman 3.6 kg). The results of present study suggest that adult must realize the risk of consuming cooked meat at high temperature and the need for education for proper dietary habit to prevent geriatric diseases.

Identification and Functional Analysis of Pig β-1,4-N-Acetylglucosaminyltransferase A (MGAT4A) (돼지 유래의 β-1,4-N-acetylglucosaminyltransferase A (MGAT4A) 유전자의 동정 및 기능 분석)

  • Kim, Ji-Youn;Hwang, Hwan-Jin;Chung, Hak-Jae;Park, Mi-Ryung;Byun, Sung June;Kim, Kyung-Woon
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.275-281
    • /
    • 2016
  • Glycan modification is important in pharmaceutical industry. Especially, sialic acid affects the bioactivity and stability of medicine. Milk of pig has been used as bioreactor to produce various pharmaceutical proteins. Therefore, it is necessary to modify the glycan chain in pig mammary grand. β-1,4-N-Acetylglucosaminyltransferase A (pMGAT4A) is one of the essential enzymes for increase of sialic acid content, but pig MGAT4A is unclear. In this study, the pMGAT4A was identified and characterized. The pMGAT4A has 1638 nucleotides encoding 535 amino acids and type II membrane topology, which is one of the common features in many glycosyltransferases. The gene was strongly expressed in liver and mammary gland, whereas was weakly expressed in small intestine, stomach and bladder. For functional test, HA-tagged MGAT4A was over-expressed in porcine kidney (PK-15) cell line. Forced expression of pMGAT4A gene was identified by qPCR, and we identified that pMGAT4A is located in Golgi complex by co- staining with HA antibody and BODIPY TR ceramide. In addition, we identified the increase of mannose-β-1,4-N-acetylglucosamine structure by ELISA and immunofluorescence using Datura stramonium agglutinin (DSA), which recognizes mannose-β-1,4-Nacetylglucosamine. Through the specific activity analysis, we showed that pMGAT4A modified bi-antennary to tri-antennary. This event affects sialic acid content. Therefore, we thought that over-expression of pMGAT4A will be necessary in pig mammary grand for improved medicine.