• 제목/요약/키워드: alumina-N

검색결과 323건 처리시간 0.02초

전이금속원소들이 첨가된 나노 티타니아 졸 및 코팅막 제조 (Preparation of Nano Titania Sols and Thin Films added with Transition Metal Elements)

  • 이강;이남희;신승한;이희균;김선재
    • 한국재료학회지
    • /
    • 제14권9호
    • /
    • pp.634-641
    • /
    • 2004
  • The photocatalytic performance of $TiO_2$ thin films coated on porous alumina balls using various aqueous $TiOCl_2$ solutions as starting precursors, to which 1.0 $mol\%$ transition metal ($Ni^{2+},\;Cr^{3+},\;Fe^{3+},\;Nb^{3+},\;and\;V^{5+}$) chlorides had been already added, has been investigated, together with characterizations for $TiO_2$ sols synthesized simultaneously in the same autoclave through hydrothermal method. The synthesized $TiO_2$ sols were all formed with an anatase phase, and their particle size was between several nm and 30 nm showing ${\zeta}-potential$ of $-25{\sim}-35$ mV, being maintained stable for over 6 months. However, the $TiO_2$ sol added with Cr had a much lower value of -potential and larger particle sizes. The coated $TiO_2$ thin films had almost the same shape and size as those of the sol. The pure $TiO_2$ sol showed the highest optical absorption in the ultraviolet light region, and other $TiO_2$ sols containing $Cr^{3+},\;Fe^{3+}\;and\;Ni^{2+}$ showed higher optical absorption than pure sol in the visible light region. According to the experiments for removal of a gas-phase benzene, the pure $TiO_2$ film showed the highest photo dissociation rate in the ultraviolet light region, but in artificial sunlight the photo dissociation rate of $TiO_2$ coated films containing $Cr^{3+},\;Fe^{3+}\;and\;Ni^{2+}$ was measured higher together with the increase of optical absorption by doping.

The effect of denture base surface pretreatments on bond strengths of two long term resilient liners

  • Kulkarni, Rahul Shyamrao;Parkhedkar, Rambhau
    • The Journal of Advanced Prosthodontics
    • /
    • 제3권1호
    • /
    • pp.16-19
    • /
    • 2011
  • PURPOSE. Purpose of this study was to evaluate effect of two surface treatments, sandblasting and monomer treatment, on tensile bond strength between two long term resilient liners and poly (methyl methacrylate) denture base resin. MATERIALS AND METHODS. Two resilient liners Super-Soft and Molloplast-B were selected. Sixty acrylic resin (Trevalon) specimens with cross sectional area of $10{\times}10$ mm were prepared and divided into two groups of 30 specimens each. Each group was surface treated (n = 10) by sandblasting (250 ${\mu}$ alumina particles), monomer treatment (for 180 sec) and control (no surface treatment). Resilient liners were processed between 2 poly(methyl methacrylate) surfaces, in the dimensions of $10{\times}10{\times}3$ mm. Tensile strength was determined with Instron Universal testing machine, at a crosshead speed of 5 mm/min; and the modes of failure (adhesive, cohesive or mixed) were recorded. The data were analyzed using one-way ANOVA, followed by Tukey HSD test (${\alpha}$= 0.05). RESULTS. Monomer pretreatment of acrylic resin produced significantly higher bond strengths when compared to sandblasting and control for both resilient liners (P < .001). Sandblasting significantly decreased the bond strength for both the liners when compared to monomer pretreatment and control (P < .001). Mean bond strength of Super-Soft lined specimens was significantly higher than Molloplast-B in various surface treatment groups (P < .05). CONCLUSION. Surface pretreatment of the acrylic resin with monomer prior to resilient liner application is an effective method to increase bond strength between the base and soft liner. Sandblasting, on the contrary, is not recommended as it weakens the bond between the two.

나노 SnO2:CNT를 이용한 가스센서의 제작 및 특성연구 (Characteristics and Preparation of Gas Sensors Using Nano SnO2:CNT)

  • 유일
    • 한국재료학회지
    • /
    • 제26권9호
    • /
    • pp.468-471
    • /
    • 2016
  • $SnO_2:CNT$ thick films for gas sensors were fabricated by screen printing method on alumina substrates and were annealed at $300^{\circ}C$ in air. The nano $SnO_2$ powders were prepared by solution reduction method using tin chloride ($SnCl_2.2H_2O$), hydrazine ($N_2H_4$) and NaOH. Nano $SnO_2:CNT$ sensing materials were prepared by ball-milling for 24h. The weight range of CNT addition on the $SnO_2$ surface was from 0 to 10 %. The structural and morphological properties of these sensing material were investigated using X-ray diffraction and scanning electron microscopy and transmission electron microscope. The structural properties of the $SnO_2:CNT$ sensing materials showed a tetragonal phase with (110), (101), and (211) dominant orientations. No XRD peaks corresponding to CNT were observed in the $SnO_2:CNT$ powders. The particle size of the $SnO_2:CNT$ sensing materials was about 5~10 nm. The sensing characteristics of the $SnO_2:CNT$ thick films for 5 ppm $H_2S$ gas were investigated by comparing the electrical resistance in air with that in the target gases of each sensor in a test box. The results showed that the maximum sensitivity of the $SnO_2:CNT$ gas sensors at room temperature was observed when the CNT concentration was 8wt%.

치밀층으로 코팅된 다공성 엔지니어링 세라믹스에서의 접촉응력에 의한 균열 거동 (Cracking Behavior Under Contact Stress in Densely Coated Porous Engineering Ceramics)

  • 김상겸;김태우;김도경;이기성
    • 한국세라믹학회지
    • /
    • 제42권8호
    • /
    • pp.554-560
    • /
    • 2005
  • The engineering ceramic needs the properties of high strength, hardness, corrosion-resistance and heat-resistance in order to withstand thermal shock or applied nonuniform stresses without failure. The densely coated porous ceramics can be used for machine component, electromagnetic component, bio-system component and energy-system component by their high-performances from superior coating properties and light-weight characteristics due to the structure including pore by itself. In this study we controlled the porosity of silica and alumina, $8.2\~25.4\%$ and $23.4\~36.0\%$, respectively, by the control of sintering temperature and starting powder size. We made bilayer structures, consisting of a transparent glass coating layer bonded to a thick substrate of different porous ceramics by a thin layer of epoxy adhesive, facilitated observations of crack initiation and propagation. The elastic modulus mismatch could be controlled using different porous ceramics as the substrate layer. Then we applied 150 N force using WC sphere with a radius of 3.18 mm by Hertzian indentation. As a result, the crack initiation in the coating layer was delayed at lower porosity in the substrate layer, and the damage in the coating layer was relatively smaller at the bilayer structure coated on higher elastic substrate.

Surface treatment of feldspathic porcelain: scanning electron microscopy analysis

  • Valian, Azam;Moravej-Salehi, Elham
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권5호
    • /
    • pp.387-394
    • /
    • 2014
  • PURPOSE. Topographic analysis of treated ceramics provides qualitative information regarding the surface texture affecting the micromechanical retention and locking of resin-ceramics. This study aims to compare the surface microstructure following different surface treatments of feldspathic porcelain. MATERIALS AND METHODS. This in-vitro study was conducted on 72 porcelain discs randomly divided into 12 groups (n=6). In 9 groups, feldspathic surfaces were subjected to sandblasting at 2, 3 or 4 bar pressure for 5, 10 or 15 seconds with $50{\mu}m$ alumina particles at a 5 mm distance. In group 10, 9.5% hydrofluoric acid (HF) gel was applied for 120 seconds. In group 11, specimens were sandblasted at 3 bar pressure for 10 seconds and then conditioned with HF. In group 12, specimens were first treated with HF and then sandblasted at 3 bar pressure for 10 seconds. All specimens were then evaluated under scanning electron microscopy (SEM) at different magnifications. RESULTS. SEM images of HF treated specimens revealed deep porosities of variable sizes; whereas, the sandblasted surfaces were more homogenous and had sharper peaks. Increasing the pressure and duration of sandblasting increased the surface roughness. SEM images of the two combined techniques showed that in group 11 (sandblasted first), HF caused deeper porosities; whereas in group 12 (treated with HF first) sandblasting caused irregularities with less homogeneity. CONCLUSION. All surface treatments increased the surface area and caused porous surfaces. In groups subjected to HF, the porosities were deeper than those in sandblasted only groups.

지리바꽃 괴경의 알카로이드 (Alkaloids from the Tuber of Aconitum chiisanense)

  • 이무택;성환길;황완균;김일혁
    • 약학회지
    • /
    • 제41권2호
    • /
    • pp.161-173
    • /
    • 1997
  • Tuber of Aconitum chiisanense(Ranunculaceae) a specific medicinal plant in Korea, which is known to have the activity to recover reduced metabolism of feeble patients and has been used to symptoms such as pain, paralysis, atonia and coldness of extremities, etc. were studied. The powdered tubers of the plant were extracted with 10% EtOH 3 times and the combined extract was dissolved in 1N HCl solution and washed with ethyl acetate. The aqueous layer was basified with solid $Na_2CO_3$ and extracted with $CHCl_3$ to obtain an alkaloidal fraction. The alkaloidal fraction was subjected to column chromatography using silica gel, alumina and Sephdex LH 20, etc. From the alkaloidal fraction, five diterpene alkaloids, mesaconitine, aconitine, hypaconitine, 8-O-ethyl 14-benzoylmesaconine and talatizamine, were isolated and identified on the basis of their physico-chemical properties and spectroscopic evidences($^1H$-, $^{13}C$-NMR, EI-MS, IR, 2D-NMR) respectively. Especially the Compound IV, 8-O-ethyl 14-benzoylmesaconine, was assumed to be an artifact resulting from mesaconitine during extraction procedures. The contents of mesaconitine, aconitine and hypaconitine in the mother tuber of this plant were 0.300%, 0.024%, and 0.068%. And that of the attached tuber(new one) of this plant were 0.336%, 0.034% and 0.240% respectively.

  • PDF

Bi-Te 및 Bi-Sb-Te 나노와이어로 구성된 열전소자의 형성공정 (Fabrication Process of the Thermoelectric Module Composed of the Bi-Te and the Bi-Sb-Te Nanowires)

  • 김민영;임수겸;오태성
    • 마이크로전자및패키징학회지
    • /
    • 제15권4호
    • /
    • pp.41-49
    • /
    • 2008
  • n형 Bi-Te 박막과 p형 Bi-Sb-Te 박막을 전기도금법으로 형성하여 열전특성을 측정하였으며, Bi-Te 나노와이어와 Bi-Sb-Te 나노와이어의 전기도금 성장거동을 분석하였다. 알루미나 템프레이트의 200nm 직경의 나노기공 내에 전기도금으로 Bi-Te 나노와이어와 Bi-Sb-Te 나노와이어를 형성시 각기 81%와 77%의 filling 비를 나타내었다. 알루미나 템프레이트에 Bi-Te 나노와이어와 Bi-Sb-Te 나노와이어를 순차적으로 전기도금하여 열전소자를 구성하였으며, Bi-Te 나노와이어 부위의 Ni 전극과 Bi-Sb-Te 나노와이어 부위의 Ni 전극 사이에서 $15{\Omega}$의 저항이 측정되었다.

  • PDF

비 표면적 큰 코발트계 담지촉매를 사용한 피셔-트롭스 반응에 의한 탄화수소의 제조에 관한 연구 (A Study on the Synthesis of Hydrocarbon by Fisher-Tropsch Synthesis over Cobalt Catalysts with High Surface Area Support)

  • 김철웅;김유성;정순용;정광은;채호정;이관영
    • 한국응용과학기술학회지
    • /
    • 제26권3호
    • /
    • pp.279-287
    • /
    • 2009
  • Fisher-Tropsch synthesis for the production of hydrocarbon from syngas was investigated on 20% cobalt-based catalysts (20% Co/HSA, 20% Co/Si-MMS), which were prepared by home-made supports with high surface areas such as high surface alumina (HSA) and silica mesopores molecular sieve (Si-MMS). In the gas phase reaction by syngas only, 20% Co/Si-MMS catalyst was shown in higher CO conversion and lower carbon dioxide formation than 20% Co/HSA, whereas the olefin selectivity was higher in 20% Co/HSA than in 20% Co/Si-MMS. In the effect of n-hexane added in syngas, the selectivities of $C_{5+}$ and olefin were increased by comparing the supercritical phase reaction with the gas phase reaction in addition to reduce unexpected methane and carbon dioxide.

소결온도 및 SiO2 첨가량에 따른 탄화규소의 마모 특성 (Wear Characteristics of SiC by Sintered Temperature and SiO2 Contents)

  • 박성호;박원조;윤한기
    • 대한기계학회논문집A
    • /
    • 제32권11호
    • /
    • pp.1003-1009
    • /
    • 2008
  • In this study, liquid phase sintered SiC (LPS-SiC) materials were made by hot pressing method. The particle size of nano-SiC powder was 30nm. Alumina ($Al_2O_3$), yttria ($Y_2O_3$) and silica ($SiO_2$) were used for sintering additives. To investigate effects of $SiO_2$, ratios of $SiO_2$ contents were changed by five kinds. Materials have been sintered for 1 hour at $1760^{\circ}C$, $1780^{\circ}C$ and $1800^{\circ}C$ under the pressure of 20MPa. The system of sintering additives which affects a property of sintering as well as the influence depending on compositions of sintering additives were investigated by measurement of density, mechanical properties such as flexural strength, vickers hardness and sliding wear resistance were investigated to make sure of the optimum condition which is about matrix of $SiC_f$/SiC composites. The abrasion test condition apply to load of 20N at 100RPM for 20min. Sintered density, flexural strength of fabricated LPS-SiC increased with increasing the sintering temperature. And in case of LPS-SiC with low $SiO_2$, sliding wear resistance has very excellent. Monolithic SiC $1800^{\circ}C$ sintering temperatures and 3wt% have excellent wear resistance.

팔라듐 합금 수소 분리막의 전처리에 관한 연구 (A Study on the Surface Pre-treatment of Palladium Alloy Hydrogen Membrane)

  • 박동건;김형주;김효진;김동원
    • 한국표면공학회지
    • /
    • 제45권6호
    • /
    • pp.248-256
    • /
    • 2012
  • A Pd-based hydrogen membranes for hydrogen purification and separation need high hydrogen perm-selectivity. The surface roughness of the support is important to coat the pinholes free and thin-film membrane over it. Also, The pinholes drastically decreased the hydrogen perm-selectivity of the Pd-based composite membrane. In order to remove the pinholes, we introduced various surface pre-treatment such as alumina powder packing, nickel electro-plating and micro-polishing pre-treatment. Especially, the micro-polishing pretreatment was very effective in roughness leveling off the surface of the porous nickel support, and it almost completely plugged the pores. Fine Ni particles filled surface pinholes with could form open structure at the interface of Pd alloy coating and Ni support by their diffusion to the membrane and resintering. In this study, a $4{\mu}m$ surface pore-free Pd-Cu-Ni ternary alloy membrane on a porous nickel substrate was successfully prepared by micro-polishing, high temperature sputtering and Cu-reflow process. And $H_2$ permeation and $N_2$ leak tests showed that the Pd-Cu-Ni ternary alloy hydrogen membrane achieved both high permeability of $13.2ml{\cdot}cm^{-2}{\cdot}min^{-1}{\cdot}atm^{-1}$ permation flux and infinite selectivity.