Abstract
In this study, liquid phase sintered SiC (LPS-SiC) materials were made by hot pressing method. The particle size of nano-SiC powder was 30nm. Alumina ($Al_2O_3$), yttria ($Y_2O_3$) and silica ($SiO_2$) were used for sintering additives. To investigate effects of $SiO_2$, ratios of $SiO_2$ contents were changed by five kinds. Materials have been sintered for 1 hour at $1760^{\circ}C$, $1780^{\circ}C$ and $1800^{\circ}C$ under the pressure of 20MPa. The system of sintering additives which affects a property of sintering as well as the influence depending on compositions of sintering additives were investigated by measurement of density, mechanical properties such as flexural strength, vickers hardness and sliding wear resistance were investigated to make sure of the optimum condition which is about matrix of $SiC_f$/SiC composites. The abrasion test condition apply to load of 20N at 100RPM for 20min. Sintered density, flexural strength of fabricated LPS-SiC increased with increasing the sintering temperature. And in case of LPS-SiC with low $SiO_2$, sliding wear resistance has very excellent. Monolithic SiC $1800^{\circ}C$ sintering temperatures and 3wt% have excellent wear resistance.