• Title/Summary/Keyword: almost-orbit

Search Result 31, Processing Time 0.024 seconds

Spin-Orbit Density Functional Theory Calculations for TlAt with Relativistic Effective Core Potentials

  • Choi, Yoon-Jeong;Bae, Cheol-Beom;Lee, Yoon-Sup;Lee, Sang-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.728-730
    • /
    • 2003
  • Bond lengths, harmonic vibrational frequencies and dissociation energies of TlAt are calculated at ab initio molecular orbital and density functional theory using effective spin-orbit operator and relativistic effective core potentials. Spin-orbit effects estimated from density functional theory are in good agreement with those from ab initio calculations, implying that density functional theory with effective core potentials can be an efficient and reliable methods for spin-orbit interactions. The estimated $R_e$, $ω_e$ and $D_e$ values are 2.937 ${\AA}$, 120 $cm^{-1}$, 1.96 eV for TlAt. Spin-orbit effects generally cause the bond contraction in Group 13 elements and the bond elongation in the Group 17 elements, and spin-orbit effects on Re of TlAt are almost cancelled out. The spinorbit effects on $D_e$ of TlAt are roughly the sum of spin-orbit effects on $D_e$ of the corresponding element hydrides. Electron correlations and spin-orbit effects are almost additive in the TlAt molecule.

WEAKLY ALMOST PERIODIC POINTS AND CHAOTIC DYNAMICS OF DISCRETE AMENABLE GROUP ACTIONS

  • Ling, Bin;Nie, Xiaoxiao;Yin, Jiandong
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.39-52
    • /
    • 2019
  • The aim of this paper is to introduce the notions of (quasi) weakly almost periodic point, measure center and minimal center of attraction of amenable group actions, explore the connections of levels of the orbit's topological structure of (quasi) weakly almost periodic points and study chaotic dynamics of transitive systems with full measure centers. Actually, we showed that weakly almost periodic points and quasiweakly almost periodic points have distinct orbit's topological structure and proved that there exists at least countable Li-Yorke pairs if the system contains a proper (quasi) weakly almost periodic point and that a transitive but not minimal system with a full measure center is strongly ergodically chaotic.

ALMOST PERIODIC HOMEOMORPHISMS AND CHAOTIC HOMEOMORPHISMS

  • Lee, Joo Sung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.477-484
    • /
    • 2007
  • Let h : M ${\rightarrow}$ M be an almost periodic homeomorphism of a compact metric space M onto itself. We prove that h is topologically transitive iff every element of M has a dense orbit. It follows as a corollary that an almost periodic homeomorphism of a compact metric space onto itself can not be chaotic. Some additional related observations on a Cantor set are made.

  • PDF

WEAK CONVERGENCE THEOREMS FOR ALMOST-ORBITS OF AN ASYMPTOTICALLY NONEXPANSIVE SEMIGROUP IN BANACH SPACES

  • Kim, J.K.;Nam, Y.M.;Jin, B.J.
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.3
    • /
    • pp.501-513
    • /
    • 1998
  • In this paper, we deal with the asymptotic behavior for the almost-orbits {u(t)} of an asymptotically nonexpansive semigroup S = {S(t) : t $\in$ G} for a right reversible semitopological semigroup G, defined on a suitable subset C of Banach spaces with the Opial's condition, locally uniform Opial condition, or uniform Opial condition.

  • PDF

Assessment of Earth Remote Sensing Microsatellite Power Subsystem Capability during Detumbling and Nominal Modes

  • Zahran M.;Okasha M.;Ivanova Galina A.
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.18-28
    • /
    • 2006
  • The Electric Power Subsystem (EPS) is one of the most critical systems on any satellite because nearly every subsystem requires power. This makes the choice of power systems the most important task facing satellite designers. The main purpose of the Satellite EPS is to provide continuous, regulated and conditioned power to all the satellite subsystems. It has to withstand radiation, thermal cycling and vacuums in hostile space environments, as well as subsystem degradation over time. The EPS power characteristics are determined by both the parameters of the system itself and by the satellite orbit. After satellite separation from the launch vehicle (LV) to its orbit, in almost all situations, the satellite subsystems (attitude determination and control, communication and onboard computer and data handling (OBC&DH)), take their needed power from a storage battery (SB) and solar arrays (SA) besides the consumed power in the EPS management device. At this point (separation point, detumbling mode), the satellite's angular motion is high and the orientation of the solar arrays, with respect to the Sun, will change in a non-uniform way, so the amount of power generated by the solar arrays will be affected. The objective of this research is to select satellite EPS component types, to estimate solar array illumination parameters and to determine the efficiency of solar arrays during both detumbling and normal operation modes.

Electron spin relaxation control in single electron QDs

  • Mashayekhi, M.Z.;Abbasian, K.;Shoar-Ghaffari, S.
    • Advances in nano research
    • /
    • v.1 no.4
    • /
    • pp.203-210
    • /
    • 2013
  • So far, all reviews and control approaches of spin relaxation have been done on lateral single electron quantum dots. In such structures, many efforts have been done, in order to eliminate spin-lattice relaxation, to obtain equal Rashba and linear Dresselhaus parameters. But, ratio of these parameters can be adjustable up to 0.7 in a material like GaAs under high-electric field magnitudes. In this article we have proposed a single electron QD structure, where confinements in all of three directions are considered to be almost identical. In this case the effect of cubic Dresselhaus interaction will have a significant amount, which undermines the linear effect of Dresselhaus while it was destructive in lateral QDs. Then it enhances the ratio of the Rashba and Dresselhaus parameters in the proposed structure as much as required and decreases the spin states up and down mixing and the deviation angle from the net spin-down As a result to the least possible value.

Precise Orbit Estimation of GPS using GIPSY-OASIS (GIPSY-OASIS기반 GPS 정밀 궤도 추정)

  • Ha, Jihyun;Chun, Sebum;Park, Kwan-Dong
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.535-541
    • /
    • 2019
  • In this paper, scripts for estimating the reference orbits of navigation satellites were developed and their performance was analyzed as a preliminary study for the development of the Korean GPS precise orbit determination technology. The JPL Flinn AC's data processing strategy was applied and Linux-based scripts were developed using GIPSY-OASIS. For the analysis of the accuracy of the estimated reference orbit, the precise orbit provided by the international GNSS data center was used as the truth. As a result, estimated satellite coordinates showed almost exactly same patterns and trends with the reference precise orbits, and their differences are in the range of ±2 cm. The average error between the two orbits was less than 1 cm in the 3D direction, while the standard deviation was also at 1 cm. From these, we found that the developed scripts have excellent performance in precise orbit determination.

FLOWS OF CHARACTERISTIC 0 AND REGULARITIES

  • Song, Hyungsoo
    • Korean Journal of Mathematics
    • /
    • v.10 no.2
    • /
    • pp.173-177
    • /
    • 2002
  • The purpose of this paper is to study and characterize the flows of characteristic 0. It is shown that the homomorphic image of distal flow of characteristic 0 is a distal flow of characteristic 0. It is also shown that the closure of every orbit in a 0-graphic flow is regular minimal.

  • PDF