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WEAK CONVERGENCE THEOREMS FOR
ALMOST-ORBITS OF AN ASYMPTOTICALLY
NONEXPANSIVE SEMIGROUP IN BANACH SPACES

J. K. KM, Y. M. Nam anND B. J. JIN

ABSTRACT. In this paper, we deal with the asymptotic behavior for
the almost-orbits {u(t)} of an asymptotically nonexpansive semigroup
S ={S(t) : t € G} for aright reversible semitopological semigroup G,
defined on a suitable subset C of Banach spaces with the Opial’s con-
dition, locally uniform Opial condition, or uniform Opial condition.

1. Introduction

In [21], Opial established the following weak convergence theorem in
a Hilbert space: Let C be a closed convex subset of a Hilbert space H
and let T : C — C be a nonexpansive asymptotically regular mapping
for which the set F(T') of fixed points is nonempty. Then, for any z in C,
the sequence of successive approximations {T"z} is weakly convergent
to an element of F(T') (cf. [3], [22]).

Similar results were also obtained in [4], [5], [13], and [17] in uniformly
convex Banach spaces. Corresponding theorems for asymptotically non-
expansive mappings and asymptotically nonexpansive semigroups were
investigated by many mathematicians ([2], [7], [19], [24], [31]). Other
related results may be found in [1], [6], [25], [26], [32], and [33).

And also, Lau-Takahashi ([14]) proved the following theorem: Let
C be a closed convex subset of a uniformly convex Banach space X
with Fréchet differentiable norm, G a right reversible semitopological
semigroup, and S = { S(t) : t € G} a nonexpansive semigroup on C. If
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F(S) # 0 and W(z) C F(S) for z € C, then the net {S(t)z} converges
weakly to some p € F(S) (see Theorem 2 and 3 in [14)).

Bruck ([4]) introduced the concept of an almost-orbit of a nonexpan-
sive mapping. Miyadera-Kobayashi ([18]) extended the notion to the
case of a nonexpansive semigroup. We can find the case for the general
commutative semigroup ([20], [28]). Takahashi-Zhang ([29], [30]) estab-
lished the weak convergence of an almost-orbit of a noncommutative
semigroup.

Recently, Lin-Tan-Xu ([15]) proved the convergence of iterates {T"z}
of an asymptotically nonexpansive mapping T in Banach spaces without
the uniform convexity. And also, Kim ([9]) proved the corresponding
theorems for the net {S(t)z} of an asymptotically nonexpansive semi-
group for a right reversible semitopological semigroup G.

In this paper, we prove the result of Takahashi-Zhang ({30]) in Banach
spaces without the uniform convexity. The results of this paper are also
extensions of Lin-Tan-Xu ([15]) and Kim ([9]).

2. Preliminaries and notations

Let C be a nonempty closed convex subset of a real Banach space
X. A mapping T : C — C is said to be asymptotically nonexpansive
([6]) if there exists a sequence {a,} of nonnegative real numbers with
lim,, o ¢, = 0 such that

[Tz -T "y IS (1+an) |z -yl

for all z,y € C. In particular if a, = 0 for all n > 1, then T is said to
be nonezpansive. Let S = {S(t) : t > 0} be a family of mappings from
C into itself. S is called an asymptotically nonexpansive semigroup on
C if S(t+ s) = S(t)S(s) for every t,s > 0, and there exists a function
a(-) : Rt — R* with lim;_, o a(t) = 0 such that

| SE)z-SHy IS A +al)) |lz-yl
for all z,y € C and t > 0, where Rt is the set of all nonnegative real

numbers. In particular, if a(t) = 0 for all ¢ > 0, then S is called a
nonexpansive semigroup on C.
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Let G be a semitopological semigroup, i.e., G is a semigroup with a
Hausdorft topology such that for each s € G the mappings s — as and
s — sa from G to G are continuous. G is called right reversible, if any
two closed left ideals of G have nonvoid intersection. In this case, (G, )
is a directed system when the binary relation “ > ” on G is defined by
t = s if and only if

{tyuGt C {s}UGs, t,seQG.

Right reversible semitopological semigroups include all commutative semi-
groups which are right amenable as discrete semigroups ([8]). Left re-
versibility of G is defined similarly. G is called reversible if it is both left
and right reversible.

Throughout the rest of this paper, G is a right reversible semitopo-
logical semigroup.

A family S = { S(¢) : t € G} of mappings from C into itself is said to
be a continuous representation of G on C if it satisfies the followings:

(1) S(ts) = S(t)S(s) for all t,s € G,

(2) For every z € C, the mapping (s,z) — S(s)z from G x C into

C is continuous when G x C has the product topology.

A continuous representation S of G on C is said to be an asymptot-
ically nonezpansive semigroup on C if each t € G, there exists k; > 0
such that

IS(t)z — Syl < A+ ke) |z —y ||

for all z,y € C, where limycq ky = 0.
Let F(S) denote the set of all common fixed points of mappings S(t)
for t € G in C, that is,

F(S) = (] F(S@®))-

teG

A continuous function u© : G — C is said to be an almost-orbit of
S={S(t):teG}if

}28(228 [lu(st) = S(s)u(®)|]) = 0.
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Clearly, for each z € C, the orbit {S(t)z : t € G} of S at z is an
almost-orbit of S.

Some rudiments in the geometry of Banach spaces are necessary for
the proofs of the main theorems in this paper. In the sequel, we give the
notations: lim = lim sup, lim = liminf, “ =" for weak convergence, and
“ — ” for strong convergence. Also, a space X is always understood to
be an infinite dimensional Banach space without Schur’s property, i.e.,
the weak and strong convergence doesn’t coincide for nets.

A Banach space X is said to satisfy Opial’s condition with respect to
G if for each net {z4}ace in X, the condition z, — z implies that

lim || 2o =2 < Im || za —y |

for all y # z (see [21] for the same notion for a sequence {z,} ). Spaces
possessing that property include the Hilbert spaces and the [P spaces for
1 < p < co. However, LP(p # 2) do not satisfy that property ([16]).

Recently, Prus ([23]) introduced the notion of the uniform Opial con-
dition for any sequence {z,} in X. A Banach space X is said to satisfy
the uniform Opial condition if for each G and for each ¢ > 0, there exists
an rg > 0 such that

1476 < lim ||za + 2|
acG

for each z € X with ||z|| > ¢ and each net {z,}ace in X such that
To — 0 and lim, . ||z4|| > 1. We now define Opial’s modulus of X,
denoted by rx(-) as follows

rx(c) = inf{lim || z + 24 || -1},
a€eG

where ¢ > 0 and the infimum is taken over all z € X with || z ||> ¢ and
nets {Zq}ace in X such that z, — 0 and lim, || zo ||> 1. It is easy
to see that rx(0) = 0, and that rx(-) is nondecreasing and continuous.
And also, we know that X satisfies the uniform Opial condition if and
only if rx(c) > 0 for all ¢ > 0.

We now introduce the notion of the locally uniform Opial condition.
A Banach space X is said to satisfy the locally uniform Opial condition
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if for any weak null net {Zq}acc in X with lim . || 4 [[> 1 and any
¢ > 0, there is an rg > 0 such that

1476 < lim || +2 |
aEG

for all z € X with || z ||> ¢ (see [15] for the same notion for a sequence
{x,}). We can easily see that each “lim” can be replaced by “lim” in
the definition of the (locally) uniform Opial condition. Clearly, uniform
Opial condition implies locally uniform Opial condition, which in turn
implies Opial’s condition ([15]).

Next recall a generalization of uniform convex Banach spaces which
is due to Sullivan ([27]). Let & > 1 be an integer. Then a Banach space
X is said to be k-uniformly rotund (briefly & — UR) if for given any
g > 0, there exists a d(¢) > 0 such that if {z1,zs, - ,Zx41} C Bx(1),

the closed unit ball of X, satisfies V(zy, 2, -+ ,Zg+1) > €, then
1 k+1
Trl ;mz < 1-—46().
Here, V (1,22, -+ ,Zk4+1) is the volume enclosed by the set {z1,z2, -,
Tk41}, 1€,
1 1
V(@s-  esn) = Sup fl(fl:l) fl(-’IJ'k+1) ,
fk(.xl) fk(w.k+1)
where the supremum is taken over all f1, f2,--- , fx € Bx-(1). The mod-

ulus of k - uniform rotundity of X is the function 5§£°)(~) defined by
. 1 k+1
0(e) =inf{ 1= 1Y 1 € Bx(D), Vi, aa, ) 2 ¢
i=1

Then it is seen that X is K — UR if and only if 55?) (€) > 0 for € > 0.
It is obvious that if the modulus of k— uniform rotundity 6% (e) is a
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nondecreasing function of € ( In fact, it is almost surely the case that 65?)
is also continuous, but this require a detailed argument). It is known
that the following implications hold ([11], [12], [27]).

(1) uniform convexity <= 1 —UR.
(2) p-uniformly rotund is g-uniformly rotund if p < gq.

Let W(u) denotes the set of all weak limits of subnets {u(t,)} of the
net {u(t)} for a right reversible semitopological semigroup G.

3. Weak convergence theorems

In this section, we study the asymptotic behavior for the almost-orbits
{u(t)} of an asymptotically nonexpansive semigroup S = {S(t) : t € G}
in a Banach space X which satisfies the locally uniform Opial condition,
uniform Opial condition, or Opial’s condition.

We have the following equivalent statement for locally uniform Opial
condition.

ProposITION 3.1. ([10]) Let X be a Banach space and let G be
a right reversible semitopological semigroup. Then the following two
statements are equivalent.

(1) X satisfies the locally uniform Opial condition.
(2) If for any net {z,}acc in X which converges weakly to x € X
and for any net {yg}gec in X,

YA TN _ <—._ _
Im(lim || 2o —yp ) < b fl 2o — 2,

then {yg} converges strongly tox € X as B € G.

We begin with the following lemma which plays a crucial role in the
proof of our main theorems in this section.

LEMMA 3.2. Let C be a nonempty weakly compact convex subset of
a Banach space X satisfying the Opial’s condition, G a right reversible
semitopological semigroup, and § = {5(t) : t € G} an asymptotically
nonexpansive semigroup on C. If {u(t)} is an almost-orbit of S, then we
have the following results.

(1) F(S) C E(u), where E(u) ={y € C : limeq ||[u(t) — y|| exist}.
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(2) If W(u)(# 0) C F(S), then W(u) consists of one point and hence
{u(t)} converges weakly to a point of F(S).

PROOF. (1). Let {v(¢)} be an another almost-orbit of S. Let ¢ and
1 be as follows:

¢(t) = sup |lu(st) — S(s)u(t)|| and $(t) = Sup [lu(st) — S(s)v(t)||
for all t € G. Then limieg ¢(t) = limieg ¢(t) = 0. Since, for all s, € G
|lu(st) —v(st)|| < @(t) + () + (1 + ks)||ul(t) — v(B)l,
inf sup [|u(r) ~ v(7)[| < $(¢) +9(t) + [[u(t) — vl
s T8

for all t € G. It follows that

inf sup ||u(7) — v(7)|| < sup inf |Ju(t) — v(?)][.

3€G s SsEG 7S

Therefore lim;eg ||u(t) — v(t)|| exists. Let y € F(S) and put v(t) = y for
all t € G. Then v(t) is an almost-orbit of S. Hence limeg ||u(t) — yl|
exists. This proves that F(S) C E(u) as desired.

(2). Let y; and y2 be two weak limits of subnets {u(ty)} and {u(tg)}
of the net {u(t)}, respectively. Since W(u) C F(S), there are dy,d2 > 0
from (1) such that

d, = }161'3 llu(t) — y1|| and d = %lelg l[u(t) — |-
If y1 # yo, then we have
dy = lim ||u(t) - ya| = Ile;cl; |[u(ta) — 91l
< C{lené luta) — yoll = [lalené |lu(ts) — vall
< élencl: lu(ts) — yill = }le% |lu(?) — w1l
=d;.

This is a contradiction, which implies that W(u) is a singleton. This
completes the proof. O

Now, we can prove the convergence theorem of the almost-orbits
{u(t)} of an asymptotically nonexpansive semigroup S = {S(t) : t € G}
for a right reversible semitopological semigroup G.
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THEOREM 3.3. Let C be a nonempty weakly compact convex subset
of a Banach space X satisfying the locally uniform Opial condition, G
a right reversible semitopological semigroup, S = {S(t) : t € G} an
asymptotically nonexpansive semigroup on C, and {u(t)} an almost-
orbit of §. If W(u) # 0 and u(t) is asymptotically regular, that is,
limyeg{u(st) — u(t)} = 0 strongly for all s € G, then {u(t)} converges
weakly to a point of F(S).

PROOF. In view of Lemma 3.2, it suffices to show that W(u) C F(S).
Let y € W(u). Then there exists a subnet {u(t,)} of the net {u(t)} such
that u(t,) — y. Since for all s € G

luta) = S()yll £ @(ta) + lluta) — ulsta)ll + (1 + ks)lulta) — vl
this implies that

E Tt T —~ S(s < Tm _
lim lim JJu(ta) ~ S(s)yll < lim [lu(ta) - vl
from the asymptotic regularity of u(t). Hence, we have limseg S(s)y =y
from Lemma 3.1. From the continuity of S(t), we obtain

S(t)y = lim S(6)S(s)y = lim S(ts)y = lim S(s)y = y-
Therefore, W(u) C F(S). This corapletes the proof. ]

It is not clear whether the asymptotic regularity of «(¢) in Theorem 3.3
can be weakened to the weakly asymptotic regularity. We improve the
Theorem 3.3 when the space X is assumed to be satisfying the uniform
Opial condition.

THEOREM 3.4. Let C be a nonempty weakly compact convex subset
of a Banach space X satisfying the uniform Opial condition, G a right
reversible semitopological semigroup, S = {S(t) : t € G} an asymp-
totically nonexpansive semigroup on C, and {u(t)} an almost-orbit of
S. If W(u) # 0 and u(t) is weakly asymptotically regular, that is,
limeg{u(st) — u(t)} = 0 weakly for all s € G, then {u(t)} converges
weakly to a point of F(S).
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PROOF. In order to prove Theorem 3.4, we have to show that W(u) C
F(S). Let y be a weak limit of subnet {u(ts)} of {u(t)}. Since u(?) is
weakly asymptotically regular, {u(st,)} weakly converges to y for all
seqG.

Letting

r(s) = Iim lu(sta) — vl
Then, by Opial’s condition, we have
r(ts) = lim [[u(tsta) — yl|
< lim -
< Im Ilu(tsta) — S(t)yll
= @ llu(tsta) — S(t)u(sty) + S(t)u(ste) — S(t)y]]

< Tm{6(sta) + (14 ko)l u(ste) ~ oIl }.

Therefore,
: < 1 —_ frved
%Emgr(ts) < ilencl; |lu(ste) — yll = r(s)

for all s € G. On the other hand, since G is right reversible, it is obvious
that a 3= ts if and only if there is a b with b »= t and a = bs. Hence, we
obtain

limr(t) < sup r(a) = supr(bs)
tEG a};ts b#t
for all t € G, which gives limyeg r(t) < limgeg r(ts). Hence, we have
lim r(¢) < lim <
}1618 r(t) < llerg r(ts) < r(s)
for all s € G. Therefore, we have
glererr(s) =r (= sxggr(s))

and r < r(s) for all s € G. Further, we know that if lim,eq r(s) exists,
then limgeq 7(s) = limgeq r(ts) for each t € G.
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First, if r = 0, then since

NS@)y — yll <llulsta) = yll + [SH)u(sta) — Syl
Hlu(tsta) — S()ulsta)ll + |[ultsta) — yl| + llu(sta) - yl|
<r(s) + (L + ke)r(s) + ¢(sta) + r(ts) +r(s)
=(3 4+ k)r(s) + P(sta) + r(ts)

for each s,t € G, we know that the net {S(t)y} converges strongly to
y by taking limyeq first and next lim,eq. Hence we have, from the
continuity of S(s),

S(s)y = lim S(s)S(t)y = lim S(st)y = lim S(t)y = y.

This implies that W(u) C F(S).

Now suppose that r > 0. In order to get the desired result, it suffices
to show that {S(t)y} converges strongly to y, in view of above case
r = 0. If not, there exist an ¢ > 0 and subnet {tg} in G such that
||S(tg)y—y|| = €. Since limyeg r(s) = r(= inf r(s)), there existsa sgp € G
such that r(sg) < r(1 + rx(c)), where rx(c) is an Opial’s modulus of X
and ¢ = £(> 0). And also, we know that, for each 8 € G,

u(tgsota) — ¥
r

—0

as a € G and

lim
acG

u(tgsota) — sz r(tgso) 51
r r 7

with “y_sft 2l > ¢. Since rx(c) > 0, we have

tgsota) — ¥ S(t
u(tgsota) Yy, Y- (ﬁ)yH

1+rx(c) < hm "

On the other hand, from

I u(tpsote) — ()l < TG sup fu(tasote) = S(ts)u(sote)
a€eG a€G BEG

+ lim (14 ki ) u(sota) — yll,
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we have

(%) S @ Tm

1
trx (C) > ~ BeG aeG

ultpsota) =y , ¥ = S(tﬂﬁ/”.
- ;

This is a contradiction which implies that {S(t)y} converges strongly to
y. This completes the proof. O

An interesting problem, which is open so far, is whether the conclusion
of Theorem 3.4 is still true if the uniform Opial condition is weakened
to Opial’s condition, but we have the following partial answer. We know
the following beautiful proposition in [9)

ProprosiTION 3.5. ([9]) If X is a k-uniformly rotund Banach space

for some k > 1 and satisfies the Opial’s condition, then it satisfies the
uniform Opial condition.

We are now in a position to prove Theorem 3.6.

THEOREM 3.6. Let X be a k - uniformly rotund Banach space for
some k > 1 with the Opial’s condition and let C,G,S, and {u(t)} be
as in Theorem 3.4. If u(t) is weakly asymptotically regular, then {u(t)}
converges weakly to a point of F(S) .

PROOF. We know that X satisfies the uniform Opial condition from
the Proposition 3.5. And hence, by Theorem 3.4, {u(t)} converges
weakly to a point of F(S) . O

REMARK. Since the k - uniformly rotund Banach space is reflexive
([27]), we need not the assumption W(u) # 0 in Theorem 3.6.

Clearly, V(z1,z2) =|| £1— 22 || and thus the 1 - UR space simply the
uniformly convex Banach space. So, we have the next corollary.

COROLLARY 3.7. (cf. [18], [28] and [30]) Let X be a uniformly convex
Banach space with the Opial’s condition, and let C,G,S and {u(t)} be
as in Theorem 3.4. Then the conclusion of Theorem 3.6 holds.
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