• Title/Summary/Keyword: almost Hermitian

Search Result 39, Processing Time 0.024 seconds

CRITICAL METRICS ON NEARLY KAEHLERIAN MANIFOLDS

  • Pak, Jin-Suk;Yoo, Hwal-Lan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.9-13
    • /
    • 1992
  • In this paper, we consider the function related with almost hermitian structure on a copact complex manifold. More precisely, on a 2n-diminsional complex manifold M admitting 2-form .ohm. of rank 2n everywhere, assume that M admits a metric g such that g(JX, JY)=g(X,Y), that is, assume that g defines an hermitian structure on M admitting .ohm. as fundamental 2-form-the 'almost complex structure' J being determined by g and .ohm.:g(X,Y)=.ohm.(X,JY). We consider the function I(g):=.int.$_{M}$ $N^{2}$d $V_{g}$, where N is the norm of Nijenhuis tensor N defined by (J,g). by (J,g).

  • PDF

LICHNEROWICZ CONNECTIONS IN ALMOST COMPLEX FINSLER MANIFOLDS

  • LEE, NANY;WON, DAE-YEON
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.2
    • /
    • pp.405-413
    • /
    • 2005
  • We consider the connections $\nabla$ on the Rizza manifold (M, J, L) satisfying ${\nabla}G=0\;and\;{\nabla}J=0$. Among them, we derive a Lichnerowicz connection from the Cart an connection and characterize it in terms of torsion. Generalizing Kahler condition in Hermitian geometry, we define a Kahler condition for Rizza manifolds. For such manifolds, we show that the Cartan connection and the Lichnerowicz connection coincide and that the almost complex structure J is integrable.

A NEW TYPE WARPED PRODUCT METRIC IN CONTACT GEOMETRY

  • Mollaogullari, Ahmet;Camci, Cetin
    • Honam Mathematical Journal
    • /
    • v.44 no.1
    • /
    • pp.62-77
    • /
    • 2022
  • This study presents an 𝛼-Sasakian structure on the product manifold M1 × 𝛽(I), where M1 is a Kähler manifold with an exact 1-form, and 𝛽(I) is an open curve. It then defines a new type warped product metric to study the warped product of almost Hermitian manifolds with almost contact metric manifolds, contact metric manifolds, and K-contact manifolds.

A SUBFOLIATION OF A CR-FOLIATION ON A LOCALLY CONFORMAL ALMOST KAHLER MANIFOLD

  • Kim, Tae-Wan;Pak, Hong-Kyung
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.5
    • /
    • pp.865-874
    • /
    • 2004
  • The present paper treats with a subfoliation of a CR-foliation F on an almost Hermitian manifold M. When M is locally conformal almost Kahler, it has three OR-foliations. We show that a CR-foliation F on such manifold M admits a canonical subfoliation D(1/ F) defined by its totally real subbundle. Furthermore, we investigate some cohomology classes for D(1/ F). Finally, we construct a new one from an old locally conformal almost K hler (in particular, an almost generalized Hopf) manifold.

H-SLANT SUBMERSIONS

  • Park, Kwang-Soon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.2
    • /
    • pp.329-338
    • /
    • 2012
  • In this paper, we define the almost h-slant submersion and the h-slant submersion which may be the extended version of the slant submersion [11]. And then we obtain some theorems which come from the slant submersion's cases. Finally, we construct some examples for the almost h-slant submersions and the h-slant submersions.

QUASI CONTACT METRIC MANIFOLDS WITH KILLING CHARACTERISTIC VECTOR FIELDS

  • Bae, Jihong;Jang, Yeongjae;Park, JeongHyeong;Sekigawa, Kouei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1299-1306
    • /
    • 2020
  • An almost contact metric manifold is called a quasi contact metric manifold if the corresponding almost Hermitian cone is a quasi Kähler manifold, which was introduced by Y. Tashiro [9] as a contact O*-manifold. In this paper, we show that a quasi contact metric manifold with Killing characteristic vector field is a K-contact manifold. This provides an extension of the definition of K-contact manifold.

THE TORSION OF THE CHARACTERISTIC CONNECTION

  • Kim, Hwajeong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.599-608
    • /
    • 2012
  • In [2], [8], the author studied the characteristic connection as a good substitute for the Levi-Civita connection. In this paper, we consider the space $U(3)=(U(1){\times}U(1){\times}U(1))$ with an almost Hermitian structure which admits a characteristic connection and compute the characteristic connection concretely.

Some Properties of Complex Grassmann Manifolds

  • Kim, In-Su
    • Honam Mathematical Journal
    • /
    • v.5 no.1
    • /
    • pp.45-69
    • /
    • 1983
  • The hermitian structures on complex manifolds have been studied by several mathematicians ([1], [2], and [3]), and the Kähler structure on hermitian manifolds have been so much too ([6], [12], and [15]). There has been some gradual progress in studying the invariant forms on Grassmann manifolds ([17]). The purpose of this dissertation is to prove the Theorem 3.4 and the Theorem 4.7, with relation to the nature of complex Grassmann manifolds. In $\S$ 2. in order to prove the Theorem 4.7, which will be explicated further in $\S$ 4, the concepts of the hermitian structure, connection and curvature have been defined. and the characteristic nature about these were proved. (Proposition 2.3, 2.4, 2.9, 2.11, and 2.12) Two characteristics were proved in $\S$ 3. They are almost not proved before: particularly. we proved the Theorem 3.3 : $G_{k}(C^{n+k})=\frac{GL(n+k,C)}{GL(k,n,C)}=\frac{U(n+k)}{U(k){\times}U(n)}$ In $\S$ 4. we explained and proved the Theorem 4. 7 : i) Complex Grassmann manifolds are Kahlerian. ii) This Kähler form is $\pi$-fold of curvature form in hyperplane section bundle. Prior to this proof. some propositions and lemmas were proved at the same time. (Proposition 4.2, Lemma 4.3, Corollary 4.4 and Lemma 4.5).

  • PDF